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1 | MOTIVATION

Arctic amplification, that is, the phenomenon of Arctic temperatures rising much faster than the global mean (Serreze
& Barry, 2005), and its present and future effects on midlatitude weather and climate have received substantial attention
in recent years. While it is well known that the midlatitude circulation can drive changes in Arctic temperatures and
sea ice, it is unclear how and to what extent the Arctic influences midlatitude weather (Barnes & Screen, 2015). Some
argue that Arctic amplification is already influencing midlatitude weather (Francis & Vavrus, 2012; Liu, Curry, Wang,
Song, & Horton, 2012; Overland & Wang, 2010; Tang, Zhang, Yang, & Francis, 2013), whereas others state that any pos-
sible signal is too small to have been observed amidst the background of atmospheric variability (Barnes, 2013; Barnes,
Dunn-Sigouin, Masato, & Woollings, 2014; Screen & Simmonds, 2010). Regarding Arctic influence on the midlatitude cir-
culation under climate change, idealized and fully coupled climate model simulations have shown an equatorward shift
of the jet streams and storm tracks (the regions where extratropical cyclones occur most frequently) as well as weaken-
ing of the zonal winds in response to Arctic warming and sea ice loss (Butler, Thompson, & Heikes, 2010; Deser, Tomas,
Alexander, & Lawrence, 2010; Magnusdottir, Deser, & Saravanan, 2004; Peings & Magnusdottir, 2014). The mean loca-
tions of the wintertime jet streams in MERRA-2 reanalysis data (Gelaro et al., 2017) can be seen in Figure 1a. While this
equatorward shift of the storm tracks is considered a robust midlatitude response to Arctic amplification, little is under-
stood about the underlying dynamics behind this response in models or whether the models can adequately simulate the
processes involved. Making progress requires that we study the two-way causal connections between Arctic temperatures
and the midlatitude circulation, that is, the midlatitude circulation driving changes in the Arctic and the Arctic driving
changes in the midlatitudes, in context of one another and the background of atmospheric variability.

The typical approach for assessing causal links in climate dynamics (including studying the links between the
jet streams and Arctic warming/sea ice loss) is targeted modeling studies. While incredibly useful for understanding the
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(a) DJF Zonal Winds, MERRA-2 (1980-2017)
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FIGURE1 (a)Daily mean December-January-February (DJF) zonal winds calculated from MERRA-2 reanalysis. Only values above
5 m/s are shown. The blue line denotes 70°N and indicates the cap over which 7 is calculated. Distributions of DJF North Pacific jet
(b) position and (c) strength. Dashed lines indicate mean (x) and two standard deviations (+2¢)
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physical mechanisms at play, this approach only allows for studying cause and effect in isolation and does not allow for
the feedbacks between the jet streams and Arctic warming to fully develop. A modeling study that examines the response
of the atmospheric circulation to prescribed heating in the Arctic analyzes the circulation response to this Arctic warm-
ing; however, as the heating in the Arctic is fixed, the circulation is unable to influence, modify, or feed back upon the
Arctic temperature. However, the midlatitude circulation is thought to have substantial impacts on the Arctic, potentially
impacting Arctic temperatures, sea ice thickness and extent, and moisture (Liu & Barnes, 2015; Overland & Wang, 2010;
Woods, Caballero, & Svensson, 2013). These two-way feedbacks are potentially very important in terms of understand-
ing the full atmospheric response to Arctic warming, and thus, it is vital to analyze both the Arctic's influence on the
midlatitudes and vice versa.

In addition, we have entered a period where atmospheric science tends to be “data rich” both in observations and model
output (Overpeck, Meehl, Bony, & Easterling, 2011). Thus, there is great need for additional tools that can aid scientists
in identifying and extracting signals. Causal discovery techniques (1) provide robust definitions of causality, (2) can have
direct ties to forecasting/prediction, (3) augment targeted model studies, and (4) allow for a direct comparison of results
from observations and models.

Here, we use two different frameworks to learn about causal relationships for the Arctic-midlatitude system. The first
framework uses vector autoregression (VAR)-type models (i.e., VAR and least absolute shrinkage and selection opera-
tor [LASSO]), combined with the concept of Granger causality. The second framework is based on the concept of Pearl
causality. We apply both frameworks to the study of causal links between the Arctic and midlatitude jet streams. The pur-
pose is two-fold: By comparing the results of two very different frameworks, we hope (1) to identify robust results and
(2) to make more geoscientists aware of the different types of causal analysis tools. In this journal article, we extend and
progress from our initial study presented as a short paper (Samarasinghe, McGraw, Barnes, & Ebert-Uphoff, 2017), while
providing detailed elaborations.

2 | CAUSALITY IN CLIMATE SCIENCE

The best known concept to identify cause-effect relationships in climate science is Granger causality, developed by
Clive Granger in the late 1960s (Granger, 1969, 1980); see Section 4.1.1. However, other methods for causal discov-
ery also exist, including Pearl causality, which was developed in the late 1980s (Pearl, 1988, 2000; Rebane & Pearl,
1987; Spirtes, Glymour, & Scheines, 2000); see Section 4.2. When investigating cause—effect relationships, it is crucial
to distinguish between two different types of causal analysis, namely, (1) intervention analysis and (2) observational
analysis. Causal calculus (Pearl, 1988; Rebane & Pearl, 1987), which provides a comprehensive mathematical frame-
work for causal discovery, analyzes what can or cannot be concluded using either type of analysis. Intervention analysis
allows one to positively prove or disprove causal relationships between considered variables, but it requires that scien-
tists can actually perform interventions on the system of study, that is, that one can change the state of any variable and
then observe the cascading effects on the other variables. In climate science, such interventions are very difficult and
most often require the use of dynamical models and a specific experimental design (Hannart, Pearl, Otto, Naveau, &
Ghil, 2016).

Here, instead of performing multiple dynamical model simulations to act as interventions, we focus solely on an
observational-type analysis, using model output that already exists in place of actual observations. Several different
frameworks for observational analysis have been applied to climate science to provide graphical representations of
likely cause-effect relationships (Bahadori & Liu, 2011; Chen, Liu, Liu, & Carbonell, 2010; Chu, Danks, & Glymour,
2005; Ebert-Uphoff & Deng, 2012; Ebert-Uphoff & Deng, 2015; McGraw & Barnes, 2018; Runge, 2014; Runge, Heitzig,
Petoukhov, & Kurths, 2012; Wang, Banerjee, Hsieh, Ravikumar, & Dhillon, 2013; Zerenner, Friederichs, Lehnertz, &
Hense, 2014). However, of highest relevance to the application considered here are causality studies related to the
Arctic, primarily the works by Strong, Magnusdottir, and Stern (2009), Matthewman and Magnusdottir (2011), and
Kretschmer, Coumou, Donges, and Runge (2016). These studies demonstrate the utility of causality techniques for study-
ing Arctic-midlatitude connections. Strong et al. (2009) and Matthewman and Magnusdottir (2011) use a VAR-Granger
approach to explore sea ice-North Atlantic oscillation and sea ice-West Pacific pattern connections, respectively. Their
approach falls into the category of Granger approaches discussed in Section 4.1.1. While Strong et al. (2009) and
Matthewman and Magnusdottir (2011) assess the performance and significance of their VAR model and its results by
comparing an unrestricted model (all connections are allowed) to a restricted model (specific connections are not per-
mitted), here we assess significance by comparing an unrestricted VAR-Granger model (similar to that described in
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Strong et al., 2009) to a LASSO model that uses regularized regression to determine significant coefficients and con-
nections (see Section 4.1.4). Another difference between our work and that of Strong et al. (2009) and Matthewman
and Magnusdottir (2011) is that these previous studies allow for simultaneous connections, whereas we, for simplicity,
do not.

Kretschmer et al. (2016) use a combination of Pearl causality and Granger causality concepts to investigate the role of
Barents-Kara Sea ice concentrations on wintertime circulation using a two-step procedure. In Step 1, they identify, for
each considered variable, its potential causes using Pearl causality. Step 2 uses Granger causality, namely, they perform a
regression analysis for each variable to verify the results obtained in Step 1 and to assess the strength of the connections.
Both steps are performed separately for each variable, that is, one variable is declared the output variable (predic-
tand) and the effect of all other variables (predictors) on the specific output variable is studied using scalar regression
models. The results from these individual analyses are then pieced together at the end to a combined graph of all
interactions. In contrast, we promote using a vector approach that studies relationships between all variables simulta-
neously, without declaring any of them predictand or predictor, which allows for feedback loops between the variables
to be explicitly identified. Nevertheless, the method by Kretschmer et al. (2016) is most closely related to the work
presented here.

Another difference between our work and previous studies (e.g., Kretschmer et al., 2016; Matthewman &
Magnusdottir, 2011; Strong et al., 2009) is that previous studies use empirical orthogonal functions to represent the circu-
lation response to Arctic warming. While empirical orthogonal function-based methods can be quite useful at dimension
reduction and capturing broad-scale spatial variability, they often fail to capture details in the circulation changes. By
focusing here on the position and strength of the jet streams separately, we are able to analyze potential circulation
changes in more detail, as jet position and jet strength do not necessarily covary (Thomas, Waugh, & Gnanadesikan, 2015;
Woollings et al., 2018).

3 | DATA

We analyze daily data from the Community Earth System Model Large Ensemble (CESM-LE; Kay et al., 2015), a fully
coupled general circulation model. We use years 402 to 2,200 of the preindustrial control run (all external forcing is fixed
at its levels from 1850), resulting in 656,634 days (1,798 years) of data that acts as a proxy for a very long observational
record. The data are gridded at a 1° horizontal grid spacing, that is, 0.9° in latitude by 1.25° in longitude. The seasonal
cycle is removed from the daily data, and the daily data are then averaged into nonoverlapping 5-day chunks to smooth out
higher frequency variability. Afterwards, each time series is standardized, that is, its mean is subtracted and it is divided by
its standard deviation. For our analysis, we focus on the winter season December, January, and February (DJF), roughly
dividing the number of data samples for each experiment by four.

The data are stationary in the long term, as they were generated by a control run with no external forcing, and the
impacts of the seasonal cycle are minimized by removing the first four Fourier harmonics of the data. Nevertheless, as
pointed out by Lund, Hurd, Bloomfield, and Smith (1995), even if the seasonal cycle is removed in this way, there is
still the possibility that seasons affect the relationship between the different variables, which would necessitate taking
the cycle into account when modeling their causal relationships. This is not a concern in this study, as we only consider
a single season (December-February), and any seasonal changes can be assumed to be sufficiently small during that
time. (Otherwise, one could use the tools provided in Lund et al., 1995, to test for periodic correlation and to adjust
the model accordingly.) The mean subtraction in the standardization ensures that all variables used in the models have
zero means. However, this step has minimal impact on the results as the variables already have means that are almost
zero (but not exactly zero) at this stage. The winter season is analyzed here because the teleconnection patterns between
different regions are strongest in winter (Wallace & Gutzler, 1981), and extratropical storm activity itself is greatest in
winter (Hoskins & Hodges, 2002; Wettstein & Wallace, 2010). Here, we focus on the North Pacific (120° E-240° E, covering
97 grid boxes in longitude), and we analyze the circulation using the following three univariate time series, each consisting
of 32,381 5-day averages:

« jetlatitude in the North Pacific, £;
« jetspeed in the North Pacific, S; and
+ 850 hPa Arctic temperature averaged over 70° N-90° N at all longitudes, 7.
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Jet latitude, £, and jet speed, S, represent the position and strength of the eddy-driven jet, which are often used as
proxies for the position and strength of the jet streams. £ and S are calculated by determining the maximum position
and strength of the zonal component of the winds at 850 hPa over the North Pacific basin (120° E-240° E). First, the
850 hPa zonal winds are averaged over all longitudes in the North Pacific basin to create a zonal-mean profile of the zonal
wind. The resulting zonal-mean zonal wind profile is interpolated to a 0.01° latitude grid. A quadratic polynomial is fit
around the maximum of this interpolated wind profile, following the work of Woollings, Hannachi, and Hoskins (2010);
see figure S3 in the work of Barnes and Fiore (2013) for an example of a zonal-mean zonal-wind profile. The maximum
of this quadratic polynomial is the jet speed (S), whereas its latitudinal position is the jet latitude (£). The distributions
of 5-day mean wintertime North Pacific jet position (Figure 1b) and jet strength (Figure 1c) can be seen in Figure 1, with
their means and spreads indicated by vertical lines. Note that the seasonal cycle has not been subtracted from the jet
position and jet speed distributions in Figure 1b,c, so as to show the actual physical values of North Pacific wintertime jet
position and speed.

4 | CAUSALITY METHODS

We briefly discuss the two types of causality methods used here, based on (1) Granger causality and (2) Pearl causality.

4.1 | Methods based on Granger causality

In this subsection, we discuss the concept of Granger causality and introduce two types of regression models, VAR models
and LASSO models, which can be used to identify variables that are Granger causes of other variables.

4.1.1 | Granger causality

The concept of Granger causality is based on the predictability of temporal variables and can be simply explained using
two univariate time series X = {x; IT= yand Y = {y [T=l. The time series X is said to be a Granger cause of Y, if the
past values of X provide information about the current state of Y, beyond what is already known from the past values
of Y, alone. Testing for Granger causality can thus be achieved by comparing two different prediction models. In the
first model, Y'is predicted using the past values of both X and Y (unrestricted model), whereas in the second model, Y is
predicted using only the past values of Y (restricted model). Then, a statistical test is carried out to determine whether
the unrestricted model significantly improves the predictability of Y compared to the restricted model; for details, see for
example the work of Strong et al. (2009). If the predictability of Y is significantly improved by the inclusion of X in the
model, X is said to Granger cause Y. As for the prediction model, a suitable linear or nonlinear model can be used. In
the context of this paper, we only look at linear lagged regression models resulting in restricted and unrestricted models
as follows:

Unrestricted model:  y; = f+ a1y + @y + ... +asyes + 01X + X2 + ...+ CpXep @8]

Restricted model: y; =y + b1y,1 + boyrs + ... + bsys_s. 2)

Here, a;, b; (for integer i € [1,s]) and ¢; (for integer j € [1, p]) are scalar regression coefficients and f and y are model
intercepts. p and s are the number of lags of X and Y, respectively. For simplicity, we use the same number of lags for each
variable, that is, s = p.

This approach, which we call the two-model Granger approach, is the simplest and by far the most common approach
in which Granger causality is used in climate science to date. The use of Granger causality in this way constitutes a major
step forward compared with more traditional methods in climate science such as single-variable lagged linear regression
analysis because the latter can often lead to misleading conclusions, which are prevented with the two-model Granger
approach (McGraw & Barnes, 2018). The two-model Granger approach can be extended by connecting the concept of
Granger causality to the coefficients of VAR models. This approach, which we call VAR-Granger, is a natural generalization
of the two-model Granger approach, which allows us to (1) easily apply Granger analysis in cases with a large number of



60f14 SAMARASINGHE ET AL.
WILEY

time series variables and (2) generate visualizations of the different relationships in the form of graphs, as demonstrated
in later sections.

4.1.2 | VAR model

VAR performs regression on several variables without declaring one variable the predictand and the remaining ones the
predictors. Instead, all variables are treated the same way. Namely, a VAR(p) model estimates the vector z, € R¥, which
contains all variables of interest, in terms of its p lags as follows:

Zi=C+AiZ 1+ ... +Ayz, ,+e for t=(p+1),..,T, 3)
where vector z; = [Zy;, ... , %] contains the values of k considered variables at time t; ¢ = [cy, ... , ]’ is a fixed vector
containing the model intercepts; A; are the (k x k) coefficient matrices (fori = 1, ... ,p); and e, = [ey, ... ,ex] is

the vector of error terms (residuals). These error terms are assumed to be independent and identically distributed with
E[e;] = 0and a nonsingular covariance matrix E[e.e]] = Z.. Using this notation, to analyze the relationships between
the two univariate time series X and Y from Section 4.1.1, we would simply use k = 2 and define z, = [x;,y,]’.

An ordinary least-squares approach is used to solve the standard regression problem and calculate the model parameters
of Equation (3), namely, vector ¢ and matrices A; (Liitkepohl, 2007). Once a model of the form in Equation (3) is obtained,
we perform a validation test to ensure that the model is stable, that is, that all roots of the characteristic polynomial lie
outside the complex unit circle (e.g., see Liitkepohl, 2007; Pfaff, 2008). Such a stable VAR( p) process is automatically
stationary as well. We derive such a VAR model for several different values of p and select a suitable model using a
selection criterion, such as the Akaike information criterion or the Bayesian information criterion (Ivanov & Kilian, 2005;
Liitkepohl, 2007; Nicholson, Matteson, & Bien, 2017).

4.1.3 | Connection to Granger causality

We can apply the concept of Granger causality to VAR models by inspecting the coefficients in A;. Let aém denote the
element of row [ and column m of matrix A;, and let the time series {g;;} denote the Ith variable without lag and {z,,,(—;}
denote the mth variable with lag i. Then, aim denotes the effect of {z,,,—;} on {z;;}. Furthermore, because the data was
normalized, a;m indicates for a change of one standard deviation of {z,,,—;} the amount of change to expect in {z;,}. (This
quantitative interpretation should be used with caution, as many geophysical relationships are nonlinear, and the model
is thus only a rough approximation.) Then, for I # m, we see in this model that {z,,—;} is useful for the prediction of
{zi¢}, if and only if aim # 0. Consequently, the mth variable, {z,,}, is said to Granger cause the Ith variable, {z;}, if and
only if at least one of the coefficients aj, # 0foranylagi =1, ... ,p.

For practical implementation, determining nonzero coefficients from a VAR model often requires applying a threshold
on the magnitudes of the coefficients. That is because, due to noise and numerical accuracy, many—sometimes even
most—of the coefficients can be very close to zero, but not exactly zero. Unless a natural threshold can be identified based
on the problem, we need to set a user-defined threshold, resulting in subjective model selection, which can be highly
sensitive to noise. The following section describes how regularized regression techniques can be used to overcome this
issue.

4.1.4 | Regularized regression (LASSO)

Regularization techniques can be used to obtain a sparse model that identifies the subset of predictors that have the
strongest effect on the predictability of the responses. Specifically, the LASSO (Hastie, Tibshirani, & Wainwright, 2015;
Nicholson et al., 2017; Tibshirani, 1996) approach finds a least squares solution subject to an /;-norm constraint on the
coefficients, namely, it imposes a bound on the sum of the absolute values of the coefficients. The imposed constraint
shrinks the values of the regression coefficients and sets many coefficients exactly to zero to obtain a more generalized and
sparse solution.! Therefore, LASSO results in a model of the exact same form as Equation (3), but where many coefficients
are exactly zero. This improves the interpretability of the model (especially when there is a large number of predictors)

INote that applying an [,-norm constraint to the coefficients would also shrink them, but would not force them to zero (Hastie et al., 2015).
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and simplifies the process of identifying Granger causes. In addition, regularization allows for a more generalized model
with improved prediction accuracy on test data compared to the ordinary least squares solution (Tibshirani, 1996). For
this particular study, we use a version of the group LASSO approach, described in the Appendix .

For LASSO approaches, the regularization parameter, 4, determines the sparsity of the resulting matrix. Using A = 0is
equivalent to the ordinary least squares solution, whereas a large value of 4 gives a very sparse solution. (See Equation (A1)
in the Appendix for the exact definition of 4 for the group Lasso approach.) A should be selected as a trade-off, that
is, small enough such that all relevant relationships in the model are included, but large enough to yield a simple and
interpretable model.

4.2 | Method based on Pearl causality

Pearl causality (Pearl, 1988, 2000; Spirtes et al., 2000) follows from causal calculus (Rebane & Pearl, 1987) and is defined
through interventions. If interventions are possible, then Pearl causality provides both sufficient and necessary conditions
for causal relationships, that is, with an intervention analysis, one can say with certainty whether or not variable X is
a cause of Y. In the case of observational analysis, we can still use Pearl causality to provide a necessary condition for
causality, namely, certain conditions have to be satisfied in order for X to possibly be a cause of Y. The primary reason for
losing the ability to prove sufficiency from observations alone is the potential existence of hidden common causes, that
is, latent confounding variables. Namely, if two variables X and Y are both related solely due to the effect on them by an
unmeasured third variable, Z, then an intervention analysis would correctly identify that there is no direct connection
between X and Y, whereas an observational analysis might incorrectly conclude in that case that X is a cause of Y, or
vice versa.

In an observational analysis, we can nevertheless use the necessary condition to eliminate the great majority of potential
connections, leaving only a small number of potential cause—effect relationships. Namely, we use an elimination method
that first assumes that all pairs of variables have cause-effect connections to each other (for all lags), and then uses
conditional independence tests as necessary causality conditions to delete connections. The best known algorithm for this
purpose is the classic PC algorithm (Spirtes & Glymour, 1991), which is named after the first names of the two authors,
Peter Spirtes and Clark Glymour. The PC algorithm usually yields a small set of potential cause—effect relationships, and
the set of true causal relationships is a subset of that set.

This type of method is called constraint-based structure learning, because we seek to constrain, that is, construct a bound-
ary set for, the set of true causal relationships. The specific method used here is the temporal version (Chu et al., 2005;
Ebert-Uphoff & Deng, 2012) of the PC stable algorithm (Colombo & Maathuis, 2014). The PC stable algorithm is a
variant of PC that is more robust and can easily be parallelized. For more details on this approach, see the work of
Ebert-Uphoff and Deng (2012). For brevity, we refer to the PC stable algorithm as simply PC in the remainder of this
document.

5 | APPLICATION TO ARCTIC-JET STREAM CONNECTIONS

To study the causal links between the Arctic and the midlatitude jet streams, we model the relationships between jet
speed (S) and Arctic temperature (7), and separately, the relationships between jet latitude (£) and Arctic temperature
(T), using the three methods discussed above, that is, the VAR-Granger, LASSO-Granger, and PC stable methods.

5.1 | Implementation details

Multivariate regression in VAR is implemented using the mvregress function in MATLAB, whereas the Glmnet (Qian,
Hastie, Friedman, Tibshirani, & Simon, 2013) MATLAB package (multiresponse Gaussian family scenario) is used to
apply LASSO. We use the Akaike information criterion and the Bayesian information criterion to select the maximum
lag, p, for the VAR model. Here we determine that p = 5(25 days). The A parameter in LASSO is selected using a K-fold
cross validation scheme (with K = 10) based on the mean square error performance on test data. Namely, the selected A
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is the A that corresponds to the one-standard-error rule, as explained in the works of Hastie et al. (2015) and Melkumova
and Shatskikh (2017); this A gives a more regularized model, while keeping the mean squared error (MSE) within one
standard error of the minimum MSE value. Based on this scheme, A = 0.0179 is selected for the 7 versus S model.
(Additional information related to the selection of p and A parameters is provided in the Supporting Material).

The learn_struct_pdag pc function of the MATLAB Bayes Net Toolbox (Murphy, 2014) is used for a simple imple-
mentation of the PC stable algorithm. We modify the Bayes Net Toolbox to use temporal constraints (Chu et al., 2005;
Ebert-Uphoff & Deng, 2012) and implement the PC stable version. We use the Fisher-Z test to test for conditional inde-
pendence using partial correlation. The significance value, a, of the independence test is chosen as « = 0.05, a common
value; results are insensitive to variations in « between 0.01 and 0.1. Instantaneous connections are not permitted between
variables in the PC stable algorithm to make results comparable with VAR and LASSO implementations. The PC model
is run with 11 time slices using the original variables {z} and 10 time shifted versions of {z} shifted by —25, 20, ..., -5,
+5, ..., +25 days (Ebert-Uphoff & Deng, 2012). As general practice, we check convergence characteristics of the model
to ensure that the model has converged to a solution (Ebert-Uphoff & Deng, 2012).

5.2 | Results and interpretation

5.2.1 | Jet speed and Arctic temperature

The VAR and LASSO models (Figure 2a,b) show both the magnitudes and the signs of the jet speed-Arctic temperature
(S-T) relationship. For LASSO (Figure 2b), only the significant (nonzero) coefficients are shown, whereas all coefficients
are shown for the VAR model (Figure 2a). Thus, lag days and coefficients that appear in both the LASSO and VAR models
can be considered robust. To begin, we note that it is clear that the VAR and LASSO models are quite similar—the signs
of the coefficients that appear in both models are largely the same, and their magnitudes are similar as well. The lags with
the strongest coefficients are the same for both VAR and LASSO. For both the LASSO and the VAR models, both S and
T are autocorrelated (curved arrows), with coefficients that decay over the 25-day period but remain nonzero. 7 drives
S 5 days later (as well as 10, 15, and 20 days later), with the positive coefficient indicating that warmer temperatures
drive a faster jet in the North Pacific. S also drives 7 at a lag of 5 days, with the negative coefficient indicating that
faster jets are associated with a colder Arctic. However, at a lag of 15 days and beyond, the relationship between S and 7
changes—S drives 7 with positive LASSO coefficients, indicating that a stronger North Pacific jet drives warmer Arctic
temperatures. Collectively, the LASSO results indicate that there is a positive feedback loop between Arctic temperature
and North Pacific jet speed—a warmer Arctic temperature drives a stronger North Pacific jet, and the stronger jet drives
further Arctic warming.

The jet speed-temperature PC model (Figure 2c) agrees quite well with the results of the LASSO and VAR models,
although its formulation does not provide the magnitudes or signs of the relationships. The autocorrelation relationships
(curved arrows) in the PC model are quite similar to those in the LASSO model. In the PC model, 7 drives S at a lag of
5 days only, and S drives 7 at lags of 15 and 20 days. These lags in the PC match well with the coefficients having a
large magnitude in the LASSO models, highlighting that the different methods yield very similar (although not identical)
results. The only exception is that, for a lag of 5 days, LASSO picks up a moderately strong negative connection from
S to 7, whereas PC does not confirm that connection. Figure 4a summarizes these results—the colors of the arrows
indicate the sign of the relationship (determined from VAR and LASSO), whereas the significant lag days are determined
by including only lags that are significant in both the LASSO and PC models.

5.2.2 | Jetlatitude and Arctic temperature

Jet latitude, £, also shows evidence of a causal relationship with 7 in the VAR, LASSO, and PC models (Figure 3). The
influence of 7 on L is not as strong as the influence of 7 on S, with both PC (Figure 3c) and LASSO (Figure 3b) showing
few lags with significant relationships. In both the LASSO and VAR (Figure 3a,b) models, the 7 driving £ relationship
is negative at a lag of 5 days and positive at a lag of 10 days. However, the PC model shows that the 7" driving £ con-
nection is only significant at 5 days; thus, we consider only the signs of the 5-day coefficients. This negative coefficient
at a lag of 5 days indicates that warmer Arctic temperatures drive an equatorward shift of the jet in the North Pacific,
consistent with results from previous modeling studies (Deser et al., 2010; Magnusdottir et al., 2004; Peings &
Magnusdottir, 2014).



SAMARASINGHE ET AL. Wl L EY 90f14

(a) VAR (b) LASSO
Days Coefficient Days Coefficient
5 0.733 5 0.677
10 -0.248 10 -0.162
15 0.079 15 0.014
. 20 -0.024 . 25 0.001
Arctic 25 0013 Arctic
temperature (77) temperature (77)
Days Coefficient Days Coefficient Days Coefficient Days Coefficient
5 0.077 5 -0.027 5 0.075 5 -0.021
10 -0.010 10 -0.001 10 0.002 15 0.031
15 0.022 15 0.044 15 0.010 20 0.020
20 0.006 20 0.016 20 0.001 25 0.002
25 0.008 25 0.014
Days Coefficient Days Coefficient
Jet speed (S) 5 0.541 Jet speed () 5 0.508
10 -0.043 15 0.018
15 0.033 20 0.023
20 0.030 25 0.001
25 0.007
(c) PC
5,10, 15 days
Arctic

temperature (77)

5 days (15), 20 days

Jet speed (S)

5, (15), 20 days

FIGURE 2 Arctic temperature (7) and jet speed (S) relationships as described by (a) VAR (p = 5), (b) LASSO (4 = 0.0179,p = 5), and
(c) PC (11 time slices, = 0.05) models. Parentheses in PC results denote weak relationships. VAR = vector autoregression; LASSO = least
absolute shrinkage and selection operator

While the 7 driving £ relationship is relatively weak, the influence of £ on 7 is stronger. The LASSO and VAR models
show that £ drives 7 with negative coefficients at most lags, indicating that a more equatorward jet drives warmer Arctic
temperatures and a more poleward jet drives cooler Arctic temperatures. This relationship is strongest at a 5-day lag; it
also strengthens at a 25-day lag in the VAR model. The PC model shows a very similar relationship to the LASSO model-£
drives 7 at a lag of 5 days, with a resurgence at 20-25 days.

Like the positive feedback loop found between 7 and S (Figure 2), the positive feedback loop in Figure 3 indicates
that the jet position-Arctic temperature feedback loop also acts to enhance Arctic warming. This positive feedback
loop between jet position and Arctic temperature is more simply represented in Figure 4b. Dynamically, a more
equatorward jet could act to enhance Arctic warming via increased cyclonic Rossby wave breaking activity on the
poleward flank of the jet stream (Barnes & Hartmann, 2012), which increases moisture transport into the Arctic and,
thus, atmospheric absorption of longwave radiation (Liu & Barnes, 2015; Woods et al., 2013), further warming the
Arctic.
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(a) VAR (b) LASSO
Days Coefficient
5 0.728
10 -0.252 Days Coefficient
15 0.077 5 0.629
. 20 -0.023 . 10 0.115
Arctic 25 0019 Arctic
temperature (J7) temperature (J7)
Days Coefficient Days Coefficient . Days Coefficient
5 -0.019 5 -0.058 Days Coefficient 5 -0.057
10 0.001 10 0.004 5 -0.024 10 -0.001
15 0.017 15 -0.005 10 0.005 15 -0.002
20 -0.001 20 -0.008 20 -0.002
25 0.011 25 -0.014 25 -0.002
Days Coefficient Days Coefficient
Jet latitude (L) 5 0.355 Jet latitude (L) 5 0.334
10 0.065 10 0.049
15 0.026 15 0.011
20 0.020 20 0.004
25 0.024 25 0.004
(c) PC
5,10, 15 days
Arctic
temperature (77)
(5) days 5, (20), 25 days
Jet latitude (L)
5,10, 15, 20, 25

days

FIGURE 3 Arctic temperature (7) and jet latitude (L) relationships as described by (a) VAR (p = 5), (b) LASSO (4 = 0.0337,p = 5), and
(c) PC (11 time slices, a = 0.05) models. Parentheses in PC results denote weak relationships. VAR = vector autoregression; LASSO = least

absolute shrinkage and selection operator

15, 20 days
Arctic jet
temperature speed
5 days

/\ positive relationship
/\ negative relationship

5, 20, 25 days

RN

Arctic jet
temperature latitude

5 days

FIGURE 4 Minimalist graphs showing the dominant feedback loops and their time lags identified by all three methods when applicable.
Note that the two positive relationships between arctic temperature and jet speed result in a positive (i.e., reinforcing) feedback loop.
Similarly, the two negative relationships between arctic temperature and jet latitude together also result in a positive feedback loop
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6 | DISCUSSION AND FUTURE WORK

Using VAR, LASSO, and PC models, we have quantified robust positive feedback loops between the North Pacific jet
stream and Arctic temperatures on daily time scales. Specifically, a positive feedback loop is identified between jet speed
and Arctic temperatures on time scales of 5-15 days, where a warmer Arctic drives a faster jet, and a faster jet drives
a warmer Arctic. Similarly, a positive feedback loop is identified between jet latitude and Arctic temperatures, where a
warmer Arctic drives a southward shift of the jet, which drives further Arctic warming.

Throughout this study, we mainly focused on the linear relationships between Arctic temperature and the jet stream
variables. We used linear regression models to identify Granger causes while we used partial correlation-based (a measure
of linear dependence) conditional independence tests in the PC algorithm to identify Pearl causes. However, the actual
relationships in climate can be complex and nonlinear. By using nonlinear regression models (e.g., nonlinear random
forests in Papagiannopoulou et al., 2017) along with statistical tests, one can identify nonlinear Granger dependencies
between variables. It is possible that such nonlinear approaches would show higher sensitivity to Granger analysis, as they
could pick up both the linear and nonlinear components of the causal relationship. In addition, the use of non-parametric
conditional independence tests (for example, tests based on conditional mutual information) would allow one to capture
linear and nonlinear Pearl dependencies from the PC algorithm without using any distributional assumptions for the data.

A limitation of any standard observational analysis, no matter whether based on Granger causality or Pearl causality,
is the potential existence of hidden common causes. Results obtained from observation analysis must thus be interpreted
with caution, that is, they should be interpreted as hypotheses that need to be confirmed by identifying the physical mech-
anisms behind each connection. The Fast Causal Inference (FCI) algorithm (Spirtes et al., 2000), which is an extension
of the PC algorithm, can be helpful for alleviating this issue and is suggested to be studied in future work.

The work described here is only the beginning of a larger study that aims to apply causal discovery techniques to
quantify Arctic-midlatitude connections. In future work, we plan to expand the current study to include (1) expansion of
these methods to reanalysis, 2D spatial fields, and inclusion of additional variables such as sea ice extent; (2) results from
significance testing by comparing unrestricted and restricted VAR models; (3) quantification of the strength of causal
relationships with nonregression-based techniques. By applying causality techniques to the topic of Arctic-midlatitude
connections, we aim not only to better understand the feedbacks between the Arctic and midlatitude weather but also to
provide the climate science community with an example of how these powerful tools can offer new insights into complex
earth science problems.
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APPENDIX

DETAILS OF THE GROUP LASSO APPROACH

In general, a standard LASSO approach is adequate to perform a basic Granger analysis. In contrast to the standard LASSO
approach, the group LASSO approach (Hastie et al., 2015; Nicholson et al., 2017) is often useful if the predictors show
a natural group structure, as is the case for time series data. By treating a group of coefficients as a collective entity and
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constraining that group (rather than the individual coefficients), this approach forces entire groups of coefficients to be
zero, rather than individual coefficients. In our case, the groups are based on the predictor variables (where predictor
variables = {{Z ;i }tT:p ali=1,...,pand m =1, ..., k})and the coefficients of any particular predictor variable are all set
to zero if that predictor does not contribute to the predictability of any of the response variables. The specific version used
here solves the optimization problem given in Equation (A1), where a',, denotes the mth column in A; and N = (T — p)
is the effective sample size.

. 1 % c 2 SR i
min ﬁ; loe =0 = D Au 5+, D, il 420 (A1)
Finally, the literature suggests that the elastic net, which is a regularization technique incorporating both /; and I, con-
straints, can be more useful than LASSO when predictors are highly correlated, which is often the case with many climate
variables (Hastie et al., 2015). However, in our study, the use of an elastic net did not provide any noteworthy changes in
the dependency structure compared to the LASSO results.
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