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ABSTRACT

Arctic–midlatitude teleconnections are complex and multifaceted. By design, targeted modeling studies

typically focus only on one direction of influence—usually, the midlatitude atmospheric response to a

changing Arctic. The two-way, coupled feedbacks between the Arctic and the midlatitude circulation on

submonthly time scales are explored using a regularized regression model formulated around Granger cau-

sality. The regularized regression model indicates that there are regions in which Arctic temperature drives a

midlatitude circulation response, and regions in which the midlatitude circulation drives a response in the

Arctic; however, these regions rarely overlap. In many regions, on submonthly time scales, the midlatitude

circulation drives Arctic temperature variability, highlighting the important role the midlatitude circulation

can play in impacting the Arctic. In particular, the regularized regression model results support recent work

that indicates that the observed high pressure anomalies over Eurasia drive a significant response in theArctic

on submonthly time scales, rather than being driven by the Arctic.

1. Introduction

As the Arctic continues to warm at a pace that out-

strips the rest of the globe, questions of Arctic influence

on the weather and climate of lower latitudes abound.

Often, Arctic–midlatitude climate studies emphasize

the impacts of Arctic variability upon the midlatitude

circulation, with numerous studies linking Arctic warm-

ing to changes in midlatitude temperature variability and

extremes (e.g., Screen et al. 2015; Ayarzagüena and

Screen 2016; Blackport and Kushner 2017), the jet

streams (e.g., Deser et al. 2010; Butler et al. 2010; Peings

et al. 2017; Ronalds et al. 2018; Zappa et al. 2018; Screen

et al. 2018), and large-scale circulation patterns (e.g.,

Overland et al. 2015; Blackport andKushner 2017; Screen

et al. 2018). However, the midlatitude circulation also

impacts Arctic weather and climate. Moist air intrusions

from lower latitudes have been linked to reductions in

sea ice extent and thickness (e.g., Park et al. 2015a,b;

Woods andCaballero 2016;Mortin et al. 2016; Burt et al.

2016),Arctic surface temperature variability (e.g.,Woods

et al. 2013; Messori et al. 2018), and changes in upper-

ocean heat content (e.g., Park et al. 2015a). These mois-

ture intrusions into the Arctic have been attributed to the

large-scale midlatitude circulation features, such as

Rossby wave breaking (e.g., Woods et al. 2013; Liu and

Barnes 2015), atmospheric rivers (e.g., Newman et al.

2012; Baggett et al. 2016), and even tropical convection

(e.g., Lee 2014; Baggett and Lee 2017). Warming in the

Arctic has also been driven by latent energy transport

(e.g., Graversen and Burtu 2016) and warm air advection

(e.g., Messori et al. 2018). Thus, the Arctic and the mid-

latitudes influence and drive variability in each other,

with both directions having substantial impacts.

Such issues of cause and effect are often probed in

observational analyses that primarily use techniques

such as compositing or regression/correlation analysis to

try to understand relationships and how they might

evolve over time. These approaches can indicate how

variables might change with each other, but cannot in-

dicate the direction of the relationship, particularly in

the presence of autocorrelation; thus, the directionality
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of the relationship is often assumed but can be difficult

to confirm. Cause and effect are also explored in tar-

geted atmospheric modeling studies, where the model is

externally forced (e.g., by sea ice loss), and the atmo-

spheric response to that forcing is evaluated. However,

these targetedmodeling studies by design typically focus

on one direction of influence in order to more fully un-

derstand the response to a specific forcing. In the case

of Arctic–midlatitude interactions, for example, many

targeted modeling experiments explore the influence

of a warmer or sea ice–reduced Arctic on the mid-

latitude circulation. They simulate Arctic warming

and/or sea ice loss through many approaches, such as

adjusting surface heat fluxes to mimic a reduced-ice

ocean (e.g., Oudar et al. 2017), continually nudging sea

ice to some target value (e.g., Smith et al. 2017;

McCusker et al. 2017), reducing the albedo of the sea ice

(e.g., Blackport and Kushner 2016, 2017), or simply

applying a warm anomaly to the lower atmosphere (e.g.,

Butler et al. 2010) [see box 1 in Screen et al. (2018) for

more discussion of the different approaches to modeling

Arctic warming and sea ice loss]. These different ap-

proaches have one thing in common—the Arctic is

continually forced to a certain state (warm air temper-

atures, increased heat fluxes, or a certain sea ice state),

regardless of what the atmosphere may be doing. Thus,

while the Arctic is able to modify the atmospheric

circulation, the atmospheric circulation is ultimately

limited in its ability to impact the Arctic. However, we

know that the atmospheric circulation does impact the

Arctic climate—and thus, a comprehensive under-

standing of Arctic–midlatitude climate dynamics must

ultimately account for the circulation’s ability to modify

Arctic climate.

While targeted modeling studies are designed to an-

alyze one direction of influence, causal discovery-based

approaches can augment model experiments by facili-

tating the simultaneous analysis of both directions of

influence—Arctic variability on midlatitude circulation,

and midlatitude circulation on Arctic variability. Causal

discovery methods strive to identify cause and effect

relationships in climate data, and represent them with

graphical models [see Ebert-Uphoff and Deng (2012)

and Runge et al. (2019) for an overview of causal dis-

covery analysis in climate sciences]. These approaches

are not intended as a replacement for the physical in-

sights that well-designed modeling experiments can

provide—rather, they can be used as a complementary

tool to identify key causal relationships and to analyze

multiple pathways of influence within a system.

One method of identifying causality uses the Granger

causality framework (Granger 1969). This approach

studies existing model output or reanalysis products to

determine cause–effect relationships based on evalua-

tion of added variance explained—that is, does the

incorporation of some lagged variable X significantly

improve the predictability of some variable Y, beyond

Y’s ability to predict itself? The Granger causality

framework has been applied to climate science prob-

lems in recent years (see Attanasio et al. 2013; McGraw

and Barnes 2018, and references therein); and in par-

ticular, to Arctic–midlatitude climate dynamics. Strong

et al. (2009) andMatthewman andMagnusdottir (2011)

study the relationship between sea ice and large-scale

Northern Hemisphere atmospheric variability with a

vector autoregression (VAR) model. Kretschmer et al.

(2016) identify key Arctic predictors of the wintertime

circulation using a causal network-based approach to

assess the strength of the predictors. Samarasinghe et al.

(2018) study the relationship between Arctic tempera-

tures and the jet streams using three different causal

discovery approaches, and they identify positive feedback

loops between Arctic temperature and North Pacific jet

position and strength on submonthly time scales.

In this paper, similar to the works mentioned in the

previous paragraph, we apply a regression model for-

mulated around Granger causality in order to explore

the submonthly, two-way feedbacks between the Arctic

and themidlatitude circulation. Our approach allows for

the simultaneous analysis of the two-way feedbacks

between the Arctic and the midlatitude circulation that

are not fully represented in targeted climate model ex-

periments. In contrast to reanalysis-based studies that

typically use standard lagged linear regression analysis,

our use of the Granger causality framework accounts

for the persistence of memory due to autocorrelation

and frames these relationships in terms of added pre-

dicted power. As in Samarasinghe et al. (2018), we

apply our model in such a way to allow for the analysis

of two-way feedbacks, rather than focusing on more

specific predictor–predictand relationships.We refine a

standard VAR model by applying a regularization

criterion; the advantages of this approach and the de-

tails of its implementation are discussed in section 2c.

Furthermore, nearly all previous explorations of Arctic–

midlatitude connections using Granger causality and

VARmethods have been performed on univariate time

series data. Here, instead of representing the mid-

latitude circulation with univariate climate indices, we

analyze the midlatitude circulation in a full spatiotem-

poral field by creating an individual regression model of

500-hPa geopotential height at each grid point. This two-

dimensional approach allows us to explicitly account for

the spatial heterogeneity of Arctic–midlatitude tele-

connections without making any a priori assumptions

about key regions.
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2. Data and methods

a. Data

We use NASA’s Modern-Era Retrospective Analysis

for Research and Applications, version 2 (MERRA-2;

Gelaro et al. 2017). We represent the midlatitude cir-

culation with 500hPa geopotential height at every grid

point (Z500); Z500 has dimensions of (longitude 3
latitude 3 time) and is analyzed over the Northern

Hemisphere only at 18 spacing in latitude and 1.258
spacing in longitude. The Arctic is represented by the

850-hPa temperature from 708 to 908N(Tpolar). Tpolar is

averaged both zonally and meridionally and thus has

dimensions of (13 time). For both variables, we use the

years 1980–2017. We remove the seasonal cycle from

the daily data by subtracting the mean and the first

four Fourier harmonics. The daily data are then av-

eraged into nonoverlapping 5-day chunks to smooth

out higher-frequency variability. For this work, we

focus only on boreal winter (December–February).

b. Granger causality

Throughout this manuscript, we work within the

framework ofGranger causality (Granger 1969).Granger

causality frames causal relationships in terms of added

predictability—that is, it assesses whether or not a given

variable adds predictive power beyond the predictand’s

ability to forecast itself [see McGraw and Barnes (2018)

for a more thorough discussion of Granger causality].

First developed as a predictive econometric modeling

tool, Granger causality has more recently found appli-

cations in climate science, including, but not limited to,

the influence of sea surface temperature on atmospheric

variability (e.g., Mosedale et al. 2006) and hurricane

strength (e.g., Elsner 2006, 2007), snow cover’s influence

on surface temperature (e.g., Kaufmann et al. 2003), the

impact of ENSO on the Indian monsoon (e.g., Mokhov

et al. 2011), and detection and attribution of global tem-

perature increases (see Attanasio et al. 2013, and refer-

ences therein). By requiring that the predictor must

explain a significant amount of variance beyond that of

the predictand, Granger causality thus imposes a more

stringent criterion for identifying a causal relationship

than a standard lagged linear regression, and is less likely

to overreport significant relationships due to its ac-

counting for the effects of autocorrelation. We note that,

like any approach, Granger causality analysis has its

limitations—in particular, the analysis can be influenced

by the presence of a confounding variable. That is, an

additional variable not included in the Granger causality

model could be influencing the variables that have been

included in the model, thus leading to a conclusion that

there is a causal relationship between two variables when

in fact they are both driven by a third process. Basic

Granger causality analysis also typically requires the as-

sumptions of linearity and stationarity, althoughapproaches

for nonstationary processes have also been developed (e.g.,

Kaufmann and Stern 2002; Attanasio et al. 2012, 2013). To

evaluate whether or not Tpolar Granger causes variability in

Z500 (and vice versa), we set up a VAR model, similar to

Strong et al. (2009), which we then further modify with a

regularization scheme.

c. Deriving the LASSO model

We model the relationship between Z500 and Tpolar

with a pth-order VAR model, which predicts each

model variable using lagged values of all the model

variables (e.g., Lütkepohl 2007). We further modify the

VAR model with a regularization scheme, which

reduces a full VARmodel to a sparse model that selects

only the predictors that have the strongest impact on the

predictability of the response (e.g., Hastie et al. 2001).

That is, a regularized regression model identifies only

the most important predictors, and reduces the likeli-

hood of overfitting the model. Here, we use the least

absolute shrinkage and selection operator (LASSO; e.g.,

Tibshirani 1996; Hastie et al. 2015; Nicholson et al. 2017)

approach to identify only the key predictors.

First, we create our full, nonregularized VAR model.

Here, as we are interested in the two-way relationships

betweenZ500 andTpolar, we apply a two-variablepth-order

VAR model to the anomalies of Z500 and Tpolar,

Z
500

(t)5 a
1
Z

500
(t2 1)1 a

2
Z

500
(t2 2)1 � � �

1 a
p
Z

500
(t2 p)1 � � � (1a)

b
1
T
polar

(t2 1)1 b
2
T
polar
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1 b

p
T
polar

(t2 p)1 �
1,t
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T
polar

(t)5 c
1
Z

500
(t2 1)1 c

2
Z

500
(t2 2)1 � � �

1 c
p
Z

500
(t2 p)1 � � � (1b)

d
1
T
polar

(t2 1)1 d
2
T
polar

(t2 2)1 � � �
1 d

p
T
polar

(t2 p)1 �
2,t
,

where �1,t and �2,t are error terms. We note that we do

not allow Z500 and Tpolar to influence each other simul-

taneously, which allows us to use the simpler form of

VAR seen in Eq. (1). Equation (1a) uses lagged values

of Z500 and Tpolar to predict Z500—the a coefficients

quantify Z500’s influence on itself, while the b coeffi-

cients quantify the influence of Tpolar on Z500. Similarly,

in Eq. (1b), lagged values of Z500 and Tpolar are used

to predict Tpolar—the c coefficients quantify Z500’s
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influence on Tpolar, while the d coefficients quantify the

influence of Tpolar on itself. We then assess Eq. (1) for

added predictive power by, for example, comparing

predictions of Z500 with and without Tpolar. That is, we

compare Eq. (1) to a version of Eq. (1) in which the b

coefficients are set to zero. If including information

about Tpolar significantly improves our ability to predict

Z500, we can say that Tpolar is a Granger cause of Z500.

Often, the full, nonregularized VAR model is

assessed collectively for Granger causality using a met-

ric such as an F test or a likelihood score to determine

added predictive power [see Sims (1980), and discussion

in the online supplemental material]. This means that

regression coefficients cannot be identified as significant

or not significant on an individual basis. For example, in

Eq. (1), when we evaluate if Tpolar is a Granger cause

Z500, we ask whether or not variables corresponding to

all b coefficients collectively increase our ability to

predictZ500. Thus, by design, either all b coefficients will

be included in the model, or none of them will be. One

limitation of such an approach is the fact that many

coefficients are close to, but not exactly zero. But as we

are not evaluating the significance of the coefficients

individually, it is difficult to determine which co-

efficients are the most important predictors, and which

are simply noise. A user-defined threshold on the mag-

nitude of the coefficients could be applied—coefficients

above this threshold would be retained, while co-

efficients smaller than this threshold would be dis-

carded. However, such a user-defined threshold can be

highly subjective.

Regularized regression provides a less arbitrary ap-

proach for identifying key coefficients from a VAR

model. When we modify the VAR model with a

LASSO regularization scheme, we can simplify Eq. (1)

to a sparse model that contains only the most important

predictors. The LASSO approach finds a least squares

solution that imposes a bound, l, on the sum of the ab-

solute values of the regression coefficients; the sparsity

of the model (i.e., the number of coefficients set to zero)

is controlled by the value of l. Practically speaking, this

constraint generates a model that is of the same form as

Eq. (1), but withmany coefficients equaling exactly zero.

This means that coefficients that explain the most vari-

ability are nonzero, while all other coefficients are ex-

actly zero. Since this approach retains only the most

important regression coefficients, it is more easily in-

terpreted, and improves themodel’s prediction accuracy

compared to an ordinary least squares approach (e.g.,

Tibshirani 1996). In this work, we use a version of the

group LASSO approach (i.e., an approach that is de-

signed for predictors with a natural group structure, such

as time series data (e.g., Hastie et al. 2015; Nicholson

et al. 2017), which is detailed in the appendix of

Samarasinghe et al. (2018).

The LASSO model requires careful selection of the

regularization parameter l. When l 5 0, the LASSO ap-

proach is identical to Eq. (1), and as l approaches ‘, the
solution becomes very sparse (i.e., nearly all coefficients

are zero). l selection is thus critical. Here, we select the

l using a K-fold cross-validation scheme (k 5 10); the

selected l corresponds to the minimum mean squared

error plus one standard deviation (e.g., Hastie et al. 2015;

Melkumova and Shatskikh 2017; Samarasinghe et al.

2018). We note that this paper focuses on a discussion of

the results of theLASSOmodel, but results from theVAR

model alone [Eq. (1), with l 5 0] are presented in the

supplemental material.

Selecting the maximum lag, represented by p, is also

important for any lagged regression model. The optimal

value of p represents a trade-off between a model with a

value of p that is large enough to account for all physi-

cally relevant relationships and a model with a value of

p that is small enough to yield a model that is easily in-

terpretable. Here, we use a model order of p 5 5—that

is, 5 chunks of 5-day means, implying lagged time scales

of up to 25 days. We estimate our optimum p with the

Akaike information criterion (Ivanov and Kilian 2005);

after this calculation, we establish amodel order of p5 5

(maximum lag of 5, or 25 days) for all grid points.

3. Results

We first analyze the results of the LASSO model ap-

plied in two dimensions—Z500 at every grid point, and

Tpolar averaged over the polar cap—in section 3a. This

two-dimensional approach allows us to clearly identify

both regions that are influenced by the Arctic (Tpolar

driving Z500), and regions that influence the Arctic

(Z500 drivingTpolar), as well as the time scales over which

these relationships operate. After we characterize the

full spatiotemporal Arctic–midlatitude relationships in

section 3a, we select key regions for further analysis in

section 3b. We separate these regions into those domi-

nated by Tpolar driving Z500, and those dominated by

Z500 driving Tpolar. We discuss the implications of these

results in section 4.

a. Two-dimensional LASSO model

We use the LASSO model described in section 2 to

explore the relationship between Arctic temperatures

(Tpolar) and the midlatitude circulation (Z500) in the

MERRA-2 reanalysis. As discussed in section 2c, in a

LASSO model, coefficients are either zero or nonzero;

thus, by definition, any coefficient seen in Figs. 1 and 2 is

viewed as a Granger cause of Tpolar orZ500, respectively.

216 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/1/213/4914676/jcli-d-19-0142_1.pdf by U
niversity of W

ashington Libraries user on 09 N
ovem

ber 2020



FIG. 1. LASSOmodel of Tpolar drivingZ500 at each grid point at lags of (a) 5 to (e) 25 days. The shading is in units of

standardized LASSO coefficients (sZ500
/stemp).
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FIG. 2. LASSOmodel ofZ500 at each grid point drivingTpolar at lags of (a) 5 to (e) 25 days. The shading is in units of

standardized LASSO coefficients (stemp/sZ500
).
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We note that both Z500 and Tpolar exhibit autocorre-

lation [a and d coefficients, respectively, in Eq. (1); not

shown]. Like many variables, temperature and geo-

potential height are typically modeled as ‘‘red noise’’

processes—that is, they have some memory of their past

states. As expected, this autocorrelation is strongest at

shorter lags and decays at longer lags. The VAR model

separates the prediction of, for example, Z500 into an

autocorrelated component [i.e., Z500 predicting Z500, a

coefficients in Eq. (1a)] and a cross-correlated com-

ponent [i.e., Tpolar predicting Z500, b coefficients in

Eq. (1a)]; thus, the influence of autocorrelation on the

cross-correlated components is limited, and ourGranger

definition of causality (based on additional predictabil-

ity beyond autocorrelation, as discussed in section 2b)

is satisfied.

Figure 1 shows the results of the LASSO model of

Tpolar driving Z500 in units of sZ500
/sTpolar

[the b terms in

Eq. (1a), with sZ500
representing the standard deviation

inZ500, and sTpolar
representing the standard deviation in

Tpolar]. That is, Fig. 1 indicates the regions in which

variability in Arctic temperatures Granger cause vari-

ability in the local 500-hPa heights. Red grid points in

Fig. 1 indicate a positive lagged relationship, in which

warm Arctic temperature anomalies drive high height

anomalies at that grid point; blue grid points in Fig. 1

indicate a negative lagged relationship in which warm

Arctic temperature anomalies drive low height anoma-

lies at that grid point. At lag day 5 (Fig. 1a), a few regions

show a sensitivity to Tpolar—warm Arctic temperature

anomalies drive positive height anomalies over much of

Greenland, far eastern Russia and Kamchatka, and the

central Pacific. At lag day 10 (Fig. 1b), sparse regions of

nonzero relationships between Arctic temperature and

Z500 remain over the central Pacific and Greenland and

also are evident over Europe and the Urals. By lag day

15 and beyond, few regions’ circulation anomalies ap-

pear to be driven byArctic temperatures (Fig. 1c). Thus,

at 5–25-day time scales, the Arctic temperature driving

midlatitude circulation (Tpolar driving Z500) relationship

is primarily important at shorter time scales, with the

strength of these relationships maximizing at lag day 5.

A recent review by Cohen et al. (2018) has also high-

lighted the dominance of shorter time scales in Arctic

temperatures driving midlatitude circulation, reinforc-

ing the importance of these relationships at 5-day lags.

We note that we only explore relatively short time

scales here, at lags of 25 days or shorter. Many recent

studies have focused on a stratospheric pathway of in-

fluence from the Arctic to the midlatitudes—broadly

speaking, this hypothesis purports that warm tempera-

ture anomalies in the Arctic (with a particular empha-

sis on the Barents–Kara Sea region) drive changes in

vertical wave activity, which act to modify and disrupt

the stratospheric polar vortex, ultimately affecting the

tropospheric circulation (e.g., Peings and Magnusdottir

2014; Sun et al. 2015; Wu and Smith 2016; Screen 2017;

Zhang et al. 2018a). Twenty-five days is likely not a

sufficient amount of time to capture the impacts of these

lower-frequency processes, and thus, our results do not

preclude the possibility of Arctic temperatures indi-

rectly influencing the midlatitude circulation indirectly

via the stratosphere on longer time scales.

Figure 2 displays the LASSO model of Z500 driving

Tpolar in units of sTpolar
/sZ500

[the c terms in Eq. (1b)].

Figure 2 highlights the regions in which the circulation at

each grid point (represented by Z500) Granger causes

Arctic temperature variability. Again, red grid points

indicate a positive lagged relationship (high height

anomalies at that grid point driving warm Arctic tem-

perature anomalies), and blue grid points indicate a

negative lagged relationship (low height anomalies

at that grid point driving warm Arctic temperature

anomalies). At lag day 5 (Fig. 2a), many regions show a

nonzero relationship between local Z500 (i.e., Z500 at

that grid point) and polar temperatures. Over Alaska,

the Beaufort Sea, and the east Pacific, as well as Siberia

and the Barents–Kara Seas, high Z500 anomalies drive

warmArctic anomalies; over the Sea of Okhotsk and the

western Pacific, and eastern Canada, andGreenland and

Iceland, low Z500 anomalies drive warm Arctic anoma-

lies (Fig. 2a), consistent with the advection of warm,

moist, maritime air from the North Atlantic and North

Pacific regions into the Arctic. Remotely, at lag day 5,

high height anomalies over the Atlantic also drive warm

Arctic anomalies (Fig. 2a). Thewave-2-like anomalies in

Fig. 2a resemble an enhancement of the zonally asym-

metric circulation (defined as the time-mean ofZ500 with

the zonal mean removed; seen in Fig. 3a), with the no-

table exception of over western Europe, where there

is no nonzero relationship in the LASSO model.

Previous studies (e.g., Baggett et al. 2016; Graversen

and Burtu 2016; Messori et al. 2018) have also linked

Arctic warming with enhancement of the climatolog-

ical planetary-scale wave activity and increased warm

air advection into the Arctic.

The pattern seen at lag day 5 is not evident at lag day

10 (Fig. 2b). At lag days 10–20 (Figs. 2b–d), there are

some regions that exhibit significant responses in the

LASSO model, albeit at smaller spatial scales and

magnitudes than seen in Fig. 2a. At lag day 15, for

example, a region of anomalously highZ500 over eastern

Canada and Hudson Bay and a region of anomalously

low Z500 over Alaska drive warm Arctic temperature

anomalies 15 days later (Fig. 2c). These anomalies may

be precursors to the pattern seen in Fig. 2a at lag day 5.
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Around lag day 20, a signal begins to reemerge over

Siberia, with high Z500 anomalies driving warm Arctic

temperatures (Fig. 2d). While this region of positive

LASSO coefficients is small at lag day 20, by lag day 25,

the region of positive LASSO coefficients is much larger

and stronger, linking high height anomalies over Siberia

and the Barents–Kara Seas to warm Arctic tempera-

tures 25 days later (Fig. 2e).

Figures 1 and 2 display the results of the LASSO

models for Tpolar driving Z500, and Z500 driving Tpolar,

respectively. In the case of both models, 37 years

ofMERRA-2 reanalysis shows nonzero results for 5–25-

day time scales in many regions. Additionally, the re-

gions in which Arctic temperatures drive variability in

the midlatitude circulation are not the same regions as

those where the midlatitude circulation drives Arctic

temperature variability. More specifically, Arctic tem-

peratures Granger cause circulation responses over

easternRussia, the central Pacific, andGreenland at lags

of up to 10 days (Figs. 1a,b), and have little influence

over themidlatitude circulation at greater lags (Figs. 1c–e).

The midlatitude circulation, however, Granger causes a

nonzero Arctic temperature response via enhancement of

the existing stationary wave pattern at lag day 5 (Fig. 2a),

and Z500 anomalies over Alaska, the Beaufort Sea, and

Hudson Bay at lags of up to 20 days (Figs. 2b–d). Begin-

ning at lag day 20, the signal over Siberia begins to re-

emerge, with positive height anomalies over Siberia and

the Barents–Kara Seas driving warm Arctic anomalies at

lag days 20–25 (Figs. 2d,e).

b. Regional analysis

The results of Figs. 1 and 2 emphasize the regional

variability of Arctic–midlatitude teleconnections. For

example, sea ice loss in specific regions has been linked

to large-scale midlatitude circulation anomalies. Atlan-

tic and Pacific ice loss produce not only different but

opposing responses in the North Atlantic Oscillation

(e.g., Sun et al. 2015; Pedersen et al. 2016); Koenigk et al.

(2016) and Screen (2017) provide more extensive re-

gional analyses of the impact of Arctic sea ice loss on the

midlatitude circulation, using correlation analysis on

ERA-Interim reanalysis (Koenigk et al. 2016) and a

suite of AGCM experiments forced by sea ice loss

(Screen 2017). We note that these studies focus almost

exclusively on the variability of the atmospheric re-

sponse to sea ice loss in different regions rather than

two-way responses, and that they are primarily con-

cerned with this response on longer time scales than we

consider here.

In contrast to previous studies (e.g., Sun et al. 2015;

Pedersen et al. 2016; Koenigk et al. 2016; Screen 2017),

we additionally focus on how different regions’ circula-

tion patterns (as represented byZ500) impact pan-Arctic

climate on submonthly time scales. In this way, we can

more closely examine Arctic–midlatitude relationships

in terms of two-way feedbacks, and how the midlatitude

circulation and the Arctic simultaneously impact each

other. To do this, we identify key regions based on the

results of Figs. 1 and 2 for regional analysis. The regions

of interest are listed in Table 1, and they can be geo-

graphically identified in Fig. 6d. Z500 is averaged over

the area of each region in Table 1, giving it the dimen-

sions of (1 3 time). As in the previous section, Tpolar is

averaged over all longitudes from 708 to 908N, with di-

mensions of (1 3 time). Thus, instead of applying the

LASSO model to each grid point separately, we simply

have one LASSO model for each region. By simplifying

our variables to two time series, we are able to represent

our results in graphical form [see Ebert-Uphoff and

Deng (2012) for a thorough discussion of the application

of graphical methods to climate science]. That is, our

variables Z500 and Tpolar are represented as nodes on a

FIG. 3. (a) Zonal anomalies of the time-mean 500-hPa geo-

potential heights in DJF. (b) Fig. 2a (LASSOmodel ofZ500 at each

grid point driving Tpolar at lag day 5), reprinted for comparison.
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graph, while the edges delineate the connections be-

tween the nodes. Our regions are defined based on the

results of Figs. 1 and 2; nevertheless, they are not overly

sensitive to the exact location of the regional bound-

aries, even when the latitudinal extent is reduced by as

much as 20%. As in Figs. 1 and 2, the results are pre-

sented as standardized LASSO coefficients (s/s).

Figures 4 and 5 show the results of the one-dimensional

LASSOmodel applied to each region in Table 1. Figure 4

contains the regions in which Z500 drives Tpolar, while

Fig. 5 contains the regions in which Tpolar drives Z500;

these relationships will be discussed shortly.

As expected, both Z500 and Tpolar exhibit autocorre-

lation in all regions (curved arrows in Figs. 4 and 5), with

the largest autocorrelation occurring at lag day 5, and

decreasing at longer lags. For Z500, at lag day 5, the

LASSO coefficients range from 0.26 to 0.45. In some

regions (specifically, the east Pacific), substantial auto-

correlation in Z500 persists at lags up to 20 days. For

Tpolar, this memory only exists up to 5 days, with a

LASSO coefficient around 0.4 in all regions.

An examination of the Z500 driving Tpolar (Fig. 4) and

Tpolar driving Z500 (Fig. 5) coefficients [c and b coeffi-

cients in Eq. (1)] reveals that in all regions, there is one

dominant relationship—that is, either Arctic tempera-

tures Granger cause variability in the midlatitude cir-

culation (Fig. 5), or the midlatitude circulation Granger

causes Arctic temperature variability (Fig. 4). In the

Atlantic, Siberia, the east Pacific, Greenland, and North

America, themidlatitude circulation drives anomalies in

Arctic temperature, but Arctic temperature does not

drive any nonzero anomalies in the local circulation in

these regions (Figs. 4a–d; regions 1, 2, 3, 5, and 7 in

Table 1). Over the Atlantic, Siberia, and the east Pacific,

at lag day 5, high local height anomalies drive warm

anomalies in Arctic temperature (Figs. 4a–c; regions 1,

3, and 5 in Table 1). Over Greenland and North

America, at lag day 5, the relationship is opposite—low

height anomalies over North America and Greenland

drive warm anomalies in Arctic temperature (Fig. 4d;

regions 2 and 7 in Table 1). At lag days 15 and 20,

however, high height anomalies over North America

drive warm Arctic temperature anomalies; a negative

relationship between Z500 over the east Pacific and

Arctic temperature also reappears at lag day 20. As seen

in Fig. 2e, there is a reemergence of a signal over Siberia

at the longest lags—at lag day 25, high height anomalies

over Siberia are also drivers of warmArctic temperature

anomalies (Fig. 4b; region 3 in Table 1).

By contrast, over the west and central Pacific, Arctic

temperature predominantly drives a response in Z500

(Fig. 5). Warm Arctic temperature anomalies drive

positive Z500 anomalies at lag day 5 for both regions

(Fig. 5a; regions 4 and 6 in Table 1). In Fig. 1a, Green-

land (represented in both Figs. 4e; region 2 in Table 1)

shows hints of a two-way feedback relationship—in

Fig. 1a, at lag day 5, warmArctic temperature anomalies

drive high Z500 anomalies over Greenland, which drive

cold Arctic temperature anomalies in 5 days time.

However, when we average Z500 over the region in

Table 1, this relationship is not nonzero according to the

LASSO model. We note that we did perform sensitivity

tests with regard to the areal extent of the averaging

region; in Greenland, the Tpolar driving the Z500 re-

lationship was sometimes nonzero in these regions.

However, in these cases, the strength of the LASSO

coefficient (in units of s/s) forZ500 drivingTpolar is more

than double that of Tpolar driving Z500, suggesting that

this two-way feedback is not of equal strength and that

the Z500 driving Tpolar relationship is dominant.

Figure 6 summarizes the results of Figs. 4 and 5 in the

form of maps. All regions show at least one causal re-

lationship at lag day 5 (Fig. 6a), while the connections

are much more limited at longer lags. There are causal

connections not only between the Arctic and the conti-

nental midlatitude regions, but also the Arctic and the

subtropical ocean basins. Over the time scales explored

in this study (5–25 days), Arctic temperatures do not

impact variability in Z500 beyond lag day 5 (Fig. 6b)

beyond the autocorrelation ofZ500, while the circulation

in some regions impacts Arctic variability up to lag

day 25 (Fig. 6e).

4. Discussion

The results of the LASSOmodel applied to Tpolar and

Z500 emphasize several points. First, we note that the

regions in which Arctic temperature is a Granger cause

of variability in Z500 are different from the regions in

which Z500 Granger causes variability in Arctic tem-

perature. In fact, the LASSO model suggests that on

submonthly time scales, many midlatitude regions in-

fluence Arctic temperatures rather than are influenced

by them. Targeted modeling studies that primarily ex-

plore the atmospheric response toArctic warming or sea

TABLE 1. Region definitions.

Region Latitude Longitude

1. Atlantic 258–408N 158–558W
2. Greenland 558–758N 08–608W
3. Siberia 508–758N 508–1008E
4. West Pacific 458–708N 1208E–1808
5. East Pacific 458–758N 1108W–1808
6. Central Pacific 208–508N 1208–1608W
7. North America 408–658N 608–1008W
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ice loss have many advantages, chief among them being

that they encourage the thorough testing of physical

hypotheses. However, both directions of influence must

be considered in order to comprehensively understand

the full implications of Arctic–midlatitude teleconnections,

thus emphasizing the utility of approaches like the LASSO

model outlined here. Here, we briefly note that we also

performed the analysis in section 3b using a standard

lagged linear regression approach. Broadly speaking, a

standard lagged linear regression model yields a higher

number of significant lagged relationships between Z500

and Tpolar than a LASSO model. In some regions, such

FIG. 4. Graphical representation of Arctic–midlatitude causal connections for regions in

which Z500 drives Tpolar. Region boundaries are given in Table 1. Curved arrows represent

autocorrelation, while straight arrows represent the cross-correlation terms.
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as the east and west Pacific, the standard lagged linear

regression approach and the LASSO model produce

largely similar results. In other regions, the standard

lagged linear regression model yields some differ-

ences compared to the LASSO model—for example, in

Siberia, the standard lagged regression model indicates

that the Tpolar driving Z500 relationship is significant at

most or all lags, while the LASSOmodel does not. These

discrepancies suggest that accounting for autocorrela-

tion can yield substantially different results when com-

pared to a model that does not directly account for

autocorrelation.

As an example, in recent years, reanalyses have

shown amarked cooling and high pressure anomaly over

Siberia (e.g., Ogawa et al. 2018). The role of Arctic

amplification and sea ice loss in driving this particular

feature has been a topic of some scientific interest, with

several studies suggesting that anomalously warmArctic

temperatures and/or anomalously low sea ice concen-

trations (particularly in the Barents–Kara Sea region)

could be responsible for driving these cold temperature

and high pressure anomalies over Siberia on interannual

time scales (e.g., Honda et al. 2009; Inoue et al. 2012;

Tang et al. 2013; Mori et al. 2014; Kug et al. 2015;

Overland et al. 2015; Luo et al. 2016). These studies

primarily apply composite analysis (Inoue et al. 2012;

Overland et al. 2015; Luo et al. 2016) or regression or

correlation-based models (Honda et al. 2009; Tang et al.

2013; Kug et al. 2015; Overland et al. 2015; Luo et al.

2016) to reanalysis output. While these approaches can

show covariability, their capability in determining the

direction of the relationship is limited—that is, they can

show that warm Arctic temperatures or low sea ice are

correlated with cold temperatures or high pressures over

Siberia, but they struggle to establish which process

drives which in the presence of autocorrelation.

It is in such situations that an approach based on

Granger causality, such as the LASSO model utilized in

this study, may provide a more robust assessment of

causality. The existence of a Granger-causal relation-

ship is established based on the predictor’s ability to

explain additional variance beyond the autocorrelation

of the predictand, imposing a more stringent criterion

for establishing a significant relationship (e.g., Runge

et al. 2014; McGraw and Barnes 2018). Indeed, our re-

sults provide evidence that rather than warm Arctic

temperature anomalies driving a strengthening of the

Siberian high, it is in fact the other way around—a

stronger Siberian high drives a warm temperature

anomaly in the Arctic on submonthly time scales. Sev-

eral recent studies using large ensembles of climate

model simulations (e.g., McCusker et al. 2016; Sun et al.

2016; Ogawa et al. 2018) have also suggested that Arctic

warming and sea ice loss do not drive significant conti-

nental cooling or high pressure responses over Eurasia—

rather, the observed cooling is simply a manifestation of

internal variability. Current studies of sea ice reductions

(e.g., Luo et al. 2017, Kelleher and Screen 2018) and

FIG. 5. Graphical representation of Arctic–midlatitude causal

connections for regions in which Tpolar drives Z500. Region bound-

aries are given in Table 1. Curved arrows represent autocorrelation,

while straight arrows represent the cross-correlation terms.

1 JANUARY 2020 MCGRAW AND BARNES 223

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/1/213/4914676/jcli-d-19-0142_1.pdf by U
niversity of W

ashington Libraries user on 09 N
ovem

ber 2020



FIG. 6. Simplified schematic of LASSOmodel results for Arctic–midlatitude causal connections at lags of (a) 5 to

(e) 25 days. Arrows pointing into the Arctic indicate regions in which the local circulation (Z500) is a Granger cause

of Arctic temperatures; arrows pointing out of the Arctic indicate regions in which Arctic temperature is a Granger

cause of the local circulation (Z500). Colors indicate the sign of the relationship—red arrows indicate a positive

LASSO coefficient (warmArctic temperature anomalies drive high geopotential height anomalies, and high height

anomalies drive warm Arctic temperature anomalies), while blue arrows indicate a negative LASSO coefficient

(warm Arctic temperature anomalies drive low geopotential height anomalies, and low height anomalies drive

warm Arctic temperature anomalies).
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extreme Arctic temperature events (e.g., Messori et al.

2018) in reanalysis have also hypothesized that high

pressure over Eurasia drives a large response in the

Arctic on daily to monthly time scales.

The LASSO model results presented here have sev-

eral novel advantages. This approach can be applied to

both climate model output and reanalysis, allowing for a

more straightforward comparison between the two.

Since the LASSOmodel is based on a Granger causality

approach, it is able to make a stronger statement about

causal relationships between Arctic temperatures and

the midlatitude circulation than a standard lagged linear

regression approach. Specifically, the Granger causality

approach also identifies the processes by which the

midlatitude atmosphere feeds back upon and modifies

the Arctic climate—a pathway that is not fully repre-

sented in many targeted modeling studies, as they force

Arctic temperatures or sea ice to a certain state. Fur-

thermore, the LASSO model as formulated here in-

herently takes the regional variability of the circulation

into account (Figs. 1 and 2), without having to run large

numbers of model simulations. We note that in this

study, we focus on the regional variability of the circu-

lation; however, there is also regional variability in

Arctic temperatures and sea ice extent (e.g., Sun et al.

2015; Screen 2017), and the modeling approach in this

work could also be used to explore the role of regional

variability in Arctic temperature on the circulation

response.

While there are many advantages to the Granger

causality approach employed in this study, we note

several important caveats. First, this study is focused

entirely on time scales of 25 days or fewer—we do not

make any claims regarding interannual or decadal var-

iability, or how these relationships might change in the

face of climate change, although we note that we do

subtract the first four Fourier harmonics in order to re-

move the seasonal cycle, which eliminates some in-

terannual variability in the Tpolar and Z500 variables

themselves. Our emphasis on submonthly time scale

variability also means that we do not explore the hy-

pothesis that Arctic warming indirectly affects the tro-

pospheric circulation by disturbing the stratospheric

polar vortex (e.g., Sun et al. 2015; Wu and Smith 2016;

Zhang et al. 2018b,a). We note that while we limit our

analysis in this work to lags of 5–25 days, the link be-

tweenZ500 driving Tpolar at a lag of 25 days in the Siberia

region (Figs. 2e and 4b) could be related to the results of

many studies that have linked changes in Barents–Kara

Sea ice cover and snow cover over Siberia (e.g., Sun et al.

2015; Wu and Smith 2016; Zhang et al. 2018a,b; Cohen

et al. 2014) to changes in the midlatitude circulation

via stratosphere–troposphere coupling, which often take

multiple weeks to emerge. Second, we note that the

LASSO coefficients in Figs. 1, 2, 4, and 5 are small. Some

of this is likely due to the nature of the LASSO re-

gression, which acts to reduce the values of the regression

coefficients overall (e.g., Hastie et al. 2015); the VAR

results, without the LASSO regularization criteria ap-

plied, do exhibit somewhat larger values for regression

coefficients (see supplemental material). However, the

overall low values of regression coefficients are consistent

with the results of Barnes and Simpson (2017), who found

that Arctic temperatures explained only 1%–3% of ad-

ditional variance in the midlatitude jet streams on sub-

seasonal time scales—that is, compared to internal

variability, the strength of these Arctic–midlatitude tel-

econnections is not especially large. Finally, we note that

the Granger causality analysis used in this work does not

permit instantaneous connections, although such con-

nections can be permitted in different formulations of the

model (e.g., Strong et al. 2009).

5. Conclusions

We have applied a regularized regression model for-

mulated on Granger causality, and its emphasis on

added predictive power, to MERRA-2 reanalysis to

study submonthly relationships between Arctic tem-

peratures and the midlatitude circulation. The regular-

ized regression model shows evidence of both Arctic

temperatures driving midlatitude circulation responses,

and midlatitude circulation driving Arctic temperature

responses, but rarely in the same location. Arctic tem-

peratures primarily drive circulation responses over the

Pacific and Greenland at lags of 10 days or shorter; we

do not see evidence of Arctic temperatures driving

nonzero responses over North America or most of

Eurasia on submonthly time scales. When we focus on

specific regions, we find that the circulation in most re-

gions is either driven by Arctic temperatures (the west

Pacific, the central Pacific), or is a driver of Arctic

temperatures (the subtropical Atlantic, Siberia, the east

Pacific, North America, Greenland). In particular, our

results over Siberia support the hypothesis that recent

observed Eurasian cooling and high pressure anomalies

are not driven by warm Arctic anomalies, but rather

they are drivers of warm Arctic temperature anomalies.

We emphasize that the midlatitude circulation drives

substantial variability in Arctic temperatures as well

and must be considered when fully evaluating Arctic–

midlatitude dynamics.
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