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ABSTRACT

In climate variability studies, lagged linear regression is frequently used to infer causality. While lagged

linear regression analysis can often provide valuable information about causal relationships, lagged regression

is also susceptible to overreporting significant relationships when one or more of the variables has substantial

memory (autocorrelation). Granger causality analysis takes into account the memory of the data and is

therefore not susceptible to this issue. A simple Monte Carlo example highlights the advantages of Granger

causality, compared to traditional lagged linear regression analysis in situations with one or more highly

autocorrelated variables. Differences between the two approaches are further explored in two illustrative

examples applicable to large-scale climate variability studies. Given that Granger causality is straightforward

to calculate, Granger causality analysis may be preferable to traditional lagged regression analysis when one

or more datasets has large memory.

1. Introduction

The establishment of cause and effect is a funda-

mental, if elusive, driver of climate science research.

While causality is much sought after, it is challenging to

establish, especially in observations—recall the adage

‘‘correlation does not equal causation.’’ Determining

true causality requires not only the establishment of a re-

lationship between two variables, but also the far more

difficult task of determining a direction of causality.

Although they do not provide information regarding

directionality, correlation-based methods, such as lagged

linear regression, remain popular and useful tools for

identifying lagged relationships between climate variables.

A lagged regression model can provide a straightfor-

ward assessment of spatial and temporal variability.

Lagged regression analysis has been a popular technique

in climate science for nearly 100 years (e.g., Walker

1923, 1924). Since 1988, the phrases ‘‘lagged regression,’’

‘‘lag regression,’’ ‘‘lagged correlation,’’ and ‘‘lag corre-

lation’’ have appeared in a combined total of over 800

manuscripts in the Journal of Climate alone. Lagged

linear regression analysis has been used in a wide variety

of climate science applications, including, but not lim-

ited to, stratosphere–troposphere interactions (e.g.,

Polvani and Waugh 2004); tropical variability patterns,

such as the Madden–Julian oscillation and El Niño–
Southern Oscillation (e.g., Klein et al. 1999; Hendon

et al. 2007); Arctic sea ice extent (e.g., Blanchard-

Wrigglesworth et al. 2011); and sea surface temperature

variability (e.g., Yu et al. 2010). This is just a small

sampling of the hundreds of studies across atmospheric

and climate science that utilize linear lagged regression

analysis.

While lagged regression can be a straightforward and

effective tool for identifying covarying patterns in space

and time, lagged regression also has its drawbacks. First,

while lagged regression can show the existence of in-

stantaneous and lagged relationships between variables,

lagged regression alone cannot indicate the direction of

causality. Lagged regression may indicate that two var-

iables are related to each other when in actuality they

are linked or driven by a third variable (e.g., Fig. 3 in

Kretschmer et al. 2016). Finally, lagged regression can

be interpreted to suggest that one variable causes a re-

sponse in the other when in fact it does not. This can

occur when one variable has high memory, or autocor-

relation (e.g., Runge et al. 2014; Kretschmer et al. 2016),

and this is the scenario that will be explored here.

As an example, consider the relationship between

tropical Pacific sea surface temperatures [i.e., El Niño–
SouthernOscillation (ENSO)], and surface temperature

over North and South America. ENSO is considered to
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be a primary driver of surface temperature anomalies in

these regions (e.g., Ropelewski and Halpert 1986; Gu

and Adler 2011). However, on monthly time scales, SST

anomalies are quite persistent—the 1-month lag auto-

correlation of the Niño-3.4 SST index (anomaly form,

with the 1951–2000mean removed; Rayner et al. 2003) is

0.91, meaning that over 80% of the variability in tropical

Pacific SST in the Niño-3.4 region is determined by the

previousmonth. TheNiño-3.4 index takes over 6months

to decorrelate (defined using its e-folding time). This

memory in ENSO can lead to ambiguity when applying

lagged linear regression. For example, Fig. 1 shows the

lagged relationship between ENSO and land surface

temperature Ts [obtained from the NOAA–CIRES

Twentieth Century Reanalysis project (Compo et al.

2011), with the mean and second-order trend removed]

over the Americas. Figure 1a displays the regression of

ENSO on Ts at lags of up to 7 months—that is, the red

shading in Fig. 1a indicates grid points for which there

is a significant lagged relationship between Ts and

ENSO up to 7 months prior (refer to section 2 for details

on determining a significant lagged relationship). How-

ever, when the regression is performed in the opposite

direction—that is, assessing the influence of lagged Ts

upon ENSO—Fig. 1b is nearly identical to Fig. 1a. One

could interpret Fig. 1b as demonstrating that Ts is driv-

ing ENSO up to 7 months in advance, even though it

is generally agreed that ENSO drives Ts at these

time scales.

Decades of research on ENSO and its impact on

surface temperature over the Americas point to ENSO

driving surface temperature, not the other way around

(e.g., Ropelewski and Halpert 1986; Gu and Adler

2011). However, that conclusion is not clear from

Fig. 1—the lagged regression results are ambiguous.

One potential cause of this ambiguity could be the high

autocorrelation in the Niño-3.4 index. Instead of asking,

‘‘Can we use Ts to predict ENSO?’’ we are better off

asking, ‘‘Does Ts help us predict ENSO beyond ENSO’s

ability to predict itself?’’ We propose the use of Granger

causality (Granger 1969) to answer this question and

to address the issue of causality in data with nonzero

memory. Granger causality analysis consists of a lagged

autoregression (e.g., a lagged regression of ENSO on

itself), compared to a lagged multiple linear regression

(e.g., a lagged regression of Ts and ENSO on ENSO),

and is only slightly more challenging to implement

than a typical lagged regression analysis. As Granger

causality accounts for memory in the data by using a

lagged autoregression, it is not susceptible to over-

reporting of causal relationships with high-memory

data, as lagged regression can be. We note that while

formal definitions of causality exist as defined by Pearl’s

causal theory (Pearl 2009) and have been more recently

introduced into climate science (e.g., Hannart et al.

2016), here, we loosely define a ‘‘causal relationship’’ as

one that shows a significant lagged relationship between

variables. The distinction between Pearl causality and

Granger causality is discussed further in section 5. It is

worth noting that like lagged regression, Granger cau-

sality could have difficulty in situations in which there

are strong two-way feedbacks occurring on similar

time scales; Granger causality is also not applicable

in situations in which some additional process not in-

cluded in the model is driving the modeled processes of

interest.

In this paper, we aim to demonstrate the following:

1) Granger causality is typically superior to traditional

lagged regression when one or more datasets has

substantial memory;

2) Granger causality and lagged regression tend to yield

similar results when there is a true causal relation-

ship; and

3) Granger causality is only slightly more difficult to

implement than traditional lagged regression.

In section 2, we discuss Granger causality and lagged

linear regression. In section 3, we compare the two

methods in a Monte Carlo simulation. In section 4, we

apply both lagged regression and Granger causality

methods to two examples in climate science and show

that Granger causality provides additional insight be-

yond that of a typical lagged linear regression. We note

that others have cautioned against lagged regressions

with data that are highly autocorrelated and have pro-

posed the use of causal effect networks and graphical

models to overcome these issues (e.g., Runge et al. 2014;

Kretschmer et al. 2016). While these methods are cer-

tainly valuable tools for the climate community (e.g.,

Ebert-Uphoff and Deng 2012), they are significantly

more complex to implement than the lagged regression

analysis they may replace. Thus, our goal here is to

present a clear, concise, and compelling case for

Granger causality analysis in situations when the data

are autocorrelated.

2. Statistical model

Granger causality (Granger 1969) was first developed

as a predictive model in economics. More recently,

Granger causality has found applications in climate

science, such as determining the influence of snow cover

and vegetation on surface temperature (e.g., Kaufmann

et al. 2003), the impact of sea surface temperature on the

NorthAtlantic Oscillation (e.g., Mosedale et al. 2006) or

on Atlantic hurricane strength (e.g., Elsner 2006, 2007),
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ENSO’s impact on the Indian monsoon (e.g., Mohkov

et al. 2011), and attributing global temperature increases

to increases in global atmospheric CO2 (see Attanasio

et al. 2013 and references therein). However, the use of

Granger causality remains far behind that of lagged re-

gression. We use a Monte Carlo simulation to demon-

strate that Granger causality is straightforward and,

under specific circumstances, is less likely than lagged

regression to lead to the inference of a causal relation-

ship when there is not one.

We start by creating our driver D; D is a first-order

autoregressive (AR-1), or red-noise, process, defined as

D(t)5a3D(t2 1)1 (12a2)1/2«
D
(t) , (1)

where a is the lag-1 autocorrelation, «D is a random value

drawn froma standard normal distribution (i.e., a standard

Gaussian random variable), and thus, D has a variance

of one. We use D to create a second time series: our

response R. By design, R is simply D lagged by some

amount of time t. 0, with added Gaussian noise «R:

R(t)5D(t2 t)1g3 «
R
(t) . (2)

When g is small, there is little additional noise added to

R, and the lag-1 autocorrelations of R and D are very

similar; large values of g yield a much noisier R with

less memory.

We perform a Monte Carlo simulation in which we

vary a, g, and t. First, we create aD time series with 550

steps following Eq. (1). After discarding the first 50

values of D, we create R following Eq. (2). We perform

our regression analysis (discussed in the next section)

and repeat this process 5000 times for each combination

of a, g, and t. We test 20 values of a, ranging from 0 to 1;

20 values of g, ranging from 0.005 to 15; and 15 values

of t, ranging from 1 to 15, to ensure that our results

are robust.

To evaluate the performance of the statistical model,

we first perform a traditional lagged regression, where

we use our driver D to predict our response R:

R(t)5 c
0
1 c

1
3D(t2 1)1 c

2
3D(t2 2)

1⋯1 c
k
3D(t2 k) , (3)

where k is the maximum lag. The significance of the full

model is assessed using a two-sided t test. In all situa-

tions, significance is assessed at 95% confidence.

As an alternative to lagged regression, we useGranger

causality. Mathematically, establishing Granger causal-

ity consists of two regressions: a lagged autoregression of

the predictand R,

R(t)5 c
0
1 c

1
3R(t2 1)1 c

2
3R(t2 2)

1⋯1 c
k
3R(t2 k) , (4)

and a multiple linear lagged regression including in-

formation about both the predictand R, and the pre-

dictor (hereafter, D),

R(t)5 a
0
1 a

1
3R(t2 1)1⋯1 a

k
3R(t2 k)

1 b
1
3D(t2 1)1⋯1 b

k
3D(t2 k) . (5)

The variance explained of R as determined by Eq. (4)

is compared to the variance explained of R as de-

termined by Eq. (5). If the multiple linear lagged re-

gression [Eq. (5)] explains significantly more variance

in R than the autoregression [Eq. (4)], it is said that D

Granger-causes R. Significance is assessed using a two-

step process:

FIG. 1. Using lagged regression to test the hypothesis that

(a) ENSO drives Ts and (b) Ts drives ENSO. Red indicates a sig-

nificant lagged relationship identified at up to 7 months. Signifi-

cance is assessed at 95% using a two-sided t test.
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1) At least one value of b must be significant according

to a two-sided t test.

2) All values of b collectivelymust increase the variance

explained by the regression according to an F test.

For both the standard lagged regression and the

Granger causality analysis, we perform the regressions

in both directions: the direction we know to be correct

(D driving R) and the direction we know to be incorrect

(R driving D). In this way, we can evaluate whether or

not Granger causality outperforms standard lagged re-

gression, as defined by a lower risk of false detection,

given the same identification rate of correct relation-

ships. It is also worth noting that selecting the maximum

lag k is an important and potentially challenging part of

Granger causality analysis. Typically, k is selected based

on a common metric for model selection, such as the

Akaike information criterion or the Bayesian, or

Schwarz, information criterion (e.g., Mosedale et al.

2006). In both cases, the preferred model is the one with

the k value that minimizes the selection criteria and thus

limits the model from becoming overfitted. Finally, the

approach that we detail here is a relatively straightfor-

ward approach to Granger causality that has been used

in climate sciences in recent years to great success; it is

worth noting, however, that there are alternative ways of

calculating Granger causality, many of which have been

developed in neuroscience (e.g., Barnett and Seth 2014;

Stokes and Purdon 2017).

3. Monte Carlo results

First, we compare the performance of lagged re-

gression and Granger causality by evaluating the ability

of D to predict R. Recall that R was created using D, so

ourmodels should suggest a causal relationship. Figure 2

shows the percentage of significant results (e.g., the

model reports a significant causal relationship for the

hypothesis that D drives R at 95%) as a function of

memory a (y axis) and noise g inR (x axis) for the lagged

regression model (Fig. 2a) and the Granger causality

model (Fig. 2b). Darker colors imply that the model

indicated a causal result (in this case, D causes R) more

often. Both panels of Fig. 2 look similar—in this case,

lagged regression and Granger causality yield compa-

rable results. Both methods show a dependence on

g—that is, as R becomes noisier, both models are less

able to predict R from D. Both methods also exhibit

minimal dependence on a, demonstrating that in gen-

eral, both models are quite capable of predictingR, even

whenD has a very high memory. Here, we note that this

lack of dependence on a is specific to the AR-1 process

modeled in Eq. (1), where the variance of the noise [the

«D(t) term] is standardized. For the more general case

where the variance ofD is not equal to one, the ability of

D to predictR does show a dependence on a, with larger

values of a showing an increased ability to correctly

identify thatD drives R at a given value of g. This effect

occurs for both the lagged linear regression andGranger

causality approaches. Thus, even for a more general

model of red noise, both methods—lagged regression

and Granger causality—yield results that are similar to

each other, and either could be used in analyzing the

hypothesis that D drives R.

While Fig. 2 demonstrates that lagged regression and

Granger causality generally yield similar results in the

case ofD drivingR, there is one notable exception: when

memory is very high (a$ 0:8) and noise is moderate

(g. 2). In this small region, Granger causality exhibits

a slightly higher failure rate than lagged regression, as

seen by the slight curve near the top of Fig. 2b. This

difference between Fig. 2a and Fig. 2b can be explained

by the fact that Granger causality evaluates added var-

iance explained—that is, the variance explained beyond

what is explained by the autocorrelation of R. If the

autocorrelation of D is very high, then R will have a

similar autocorrelation and similar values if the noise is

moderate. In this case, R has little to add beyond what is

already contained in the past values of D, and thus,

Granger causality will not indicate a significant causal

relationship between R and D, while lagged regression

will. It is worth noting that this effect is only seen for a

small subset of the Monte Carlo simulations with large

memory and moderate noise, that the Granger causality

model still confirms the hypothesis that D drives R at a

rate of at least 70%, and that this effect is less severe as

the sample size is increased. Outside of this small region,

lagged regression and Granger causality perform very

similarly.

Next, we evaluate lagged regression and Granger

causality by using R to predict D; we compare the

outcomes of the two methods when we look for cau-

sality in the wrong direction (recall that R was created

fromD). In this case, we would hope that the models do

not suggest a causal relationship betweenR andD. This

hypothesis of R driving D is tested in Fig. 3. Figure 3 is

laid out similarly to Fig. 2, with darker colors indicating

that the model reported a causal relationship more

frequently. In Fig. 3, the advantages of Granger cau-

sality become apparent. Figure 3a shows that the lagged

regression model exhibits a strong dependence on a—as

D’s memory increases, the lagged regression model

is increasingly more likely to suggest that R drives D,

which we know to be incorrect. Even at moderate values

of a, the lagged regression model implies that there

is a causal relationship in the wrong direction. While
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low values of a show a false positive rate between 5%

and 10% (recall that significance is assessed at 95%

confidence, meaning wewould expect a significant result

of 5% merely by random chance), at a5 0:5, the lagged

regression model indicates that R causes D between

10% and 100% of the time, depending on the noisiness

of R. For a$ 0:8, this false positive rate is even higher,

suggesting 25% of the time that R causes D for even

high values of g. Figure 3a shows only the results for

t5 1 (i.e., a lag of 1 time step), but larger lags are

qualitatively similar, although moderate values of

a become less sensitive at larger lags (e.g., at t5 3,

FIG. 2. Testing the hypothesis that D drives R using (a) lagged regression and (b) Granger

causality. Shading indicates the percentage of significant results at 95% confidence.
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values of a# 0:4 yield a significant result less than 10%

of the time).

There is no such dependence on memory for the

Granger causality method, as seen in Fig. 3b. Indeed,

Fig. 3b indicates that the results of the Granger causal-

ity method are simply noise, with Granger causality

yielding a significant result about 5% of the time, con-

sistent with our 95% significance testing. These results

are not dependent on lag t; memory a, or noise g inR. In

this case, Granger causality’s insensitivity to a, or mem-

ory in D, shows an improvement over a typical lagged

regression model for variables with high memory.

FIG. 3. Testing the hypothesis that R drives D using (a) lagged regression and (b) Granger

causality. Shading indicates the percentage of significant results at 95% confidence.
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Recall that the 1-month autocorrelation of Niño 3.4 is

0.91. Figure 3a demonstrates that a lagged regression

analysis involving Niño 3.4 could be susceptible to

reporting a causal relationship when there is none—the

lagged regression analysis is simply picking up the

memory a in Niño 3.4. Granger causality analysis, on

the other hand (as seen in Fig. 3b), would likely not be

susceptible to this problem, as the results of the Granger

causality analysis do not depend on a, even when a is

very high [see Runge et al. (2014) for a more in-depth

discussion of this effect]. This will be explored in the

following section.

4. Applications in climate variability

a. ENSO and surface temperature

We now apply the results of our statistical model to

the apparent paradox of Fig. 1. We know that ENSO’s

memory is large; do the benefits of Granger causality

seen in the statistical model carry over to climate

variability problems? This time, we perform lagged

regression and Granger causality analysis in both di-

rections—we use ENSO to predict Ts and Ts to predict

ENSO. We focus only on temperatures over land.

Figure 4 compares lagged regression (Figs. 4a,b) and

Granger causality (Figs. 4c,d) to test the hypothesis that

ENSO drives Ts (Figs. 4a,c) and that Ts drives ENSO

(Figs. 4b,d). While Fig. 4 shows only the results for a

maximum lag of 7 months (k5 7), results from maxi-

mum lags of 3–9 months (from k5 3 to k5 9) are

comparable. Red in Fig. 4 indicates that a significant

lagged relationship is identified for k5 7. Red does not

convey the magnitude of the relationship; it only in-

dicates whether or not a significant relationship exists

at a given grid point at 95% confidence. When testing

whether or not ENSO drives Ts, Granger causality

(Fig. 4c) and lagged regression (Fig. 4a) perform simi-

larly: both indicate that ENSO fromup to 7months prior

drives Ts over much of North and South America.

However, when testing the other direction—that Ts

from up to 7 months prior drives ENSO—the two

methods yield very different results (Figs. 4b,d). In this

case, the lagged regression (Fig. 4b) looks quite similar

FIG. 4. Using (a),(b) lagged regression and (c),(d)Granger causality to test the hypothesis that (left) ENSOdrives

Ts and (right) Ts drives ENSO. Red indicates a significant lagged relationship identified at up to 7 months (k5 7).

Significance is assessed at 95%.
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to the results of the lagged regression testing whether or

not ENSO drives Ts (Fig. 4a). Since we know that the

autocorrelation of ENSO is very high, it seems unlikely

that Ts is exerting such a strong influence on ENSO at

lags of 7 months; it is more likely that the results of

Fig. 4b are due, at least in part, to the high autocorre-

lation of ENSO. Granger causality does account for the

memory in ENSO and shows that Ts over North and

South America up to 7 months prior has little influence

on ENSO (Fig. 4d). Put another way, Granger causality

asks, ‘‘What is the variance in ENSO due to Ts not al-

ready accounted for by ENSO itself?’’ Therefore, since

most of the variance in ENSO is explained by past values

of ENSO, Granger causality does not report that Ts

causes ENSO.

Since ENSO dynamics and teleconnections have been

well studied and largely understood for decades, climate

scientists are unlikely to misinterpret Fig. 4b. The

memories of the two variables are vastly different, and

the ENSO–Ts relationship is fairly well known. How-

ever, in cases where the dynamics are not as well un-

derstood, Granger causality analysis could provide

valuable insights beyond those of traditional lagged

regression.

b. Arctic–midlatitude connections: Another example

Finally, we use Granger causality analysis and lagged

regression to investigate the relationship betweenArctic

temperature and low-level winds across the mid-to-high

latitudes. The topic of the impact of Arctic warming on

midlatitude weather and climate is one of much scien-

tific discussion and debate (e.g., Walsh 2014; Barnes and

Screen 2015 and references therein). However, the di-

rection of the causality of this Arctic–midlatitude re-

lationship is not clear—how much does the Arctic

temperature drive midlatitude weather, and how much

does midlatitude weather drive changes in Arctic tem-

perature? We do not fully address these questions here;

we simply seek to point out that Granger causality can

provide information about the direction(s) of causal

relationships that cannot be determined from traditional

lagged regression.

To analyze the relationship between Arctic tempera-

ture and low-level winds, we define Arctic temperature

Tpol as a vertically weighted average of 1000–700-hPa

temperature from 708 to 908N. Low-level zonal winds

U700 are evaluated on the 700-hPa surface throughout

the Northern Hemisphere. Both Tpol and U700 are cal-

culated using daily means of 6-hourly data from the

MERRA-2 reanalysis data on a 0.6258 by 0.58 spatial
grid (GMAO 2015). The seasonal cycle and second-

order trends are removed from both Tpol and U700.

Then Tpol and U700 are averaged into 5-day means in

order to low-pass filter the data and focus on sub-

seasonal variability rather than on individual synoptic

events. Lagged regression and Granger causality anal-

ysis are performed for maximum lags spanning from 5 to

30 days (k5 1, . . . , 6); we focus on a subseasonal time

scale of 20 days (k 5 4), but results are similar for

maximum lags of 5–30 days. Here, we focus solely on the

annual mean; the impacts of seasonality will be dis-

cussed in a later study.

Figure 5 displays the results of lagged (Figs. 5a,b) and

Granger (Figs. 5c,d) regression analysis for Tpol and

U700 at a maximum lag of 20 days (k 5 4). Figures 5a

and 5c test the hypothesis that Tpol drives U700; Figs. 5b

and 5d test the hypothesis that U700 drives Tpol. Fo-

cusing first on the case of Tpol driving U700 (Figs. 5a,c),

we see that both Granger causality (Fig. 5c) and lagged

regression (Fig. 5a) show large-scale responses across

much of Siberia, Alaska, the Canadian Arctic, and

northern Europe, as well as signals in interior North

America and Asia. Lagged regression, however, shows

much larger responses over the ocean basins than

Granger causality does. As the autocorrelation of the

ocean is larger than that of the land surface (i.e., the

ocean hasmorememory than the land), it is possible that

the differences in the response in Fig. 5a, as compared to

Fig. 5c, are due to the effect of memory over the oceans.

Physically, Figs. 5a and 5c imply that Arctic lower-

tropospheric temperatures may drive a response in the

low-level zonal winds in the sub-Arctic, particularly over

northern Europe, Siberia, and northern Canada. This

response is consistent with studies that have reported

links between Siberian temperature anomalies and snow

cover and between Arctic amplification and sea ice loss

(e.g., Inoue et al. 2012; Ghatak et al. 2012; Cohen et al.

2012; Peings et al. 2013).

The case of 700-hPa winds driving Arctic tempera-

tures (Figs. 5b,d) presents a somewhat different pic-

ture. Again, the lagged regression (Fig. 5b) shows

large-scale responses over much of the Northern

Hemisphere—the Atlantic and Pacific storm tracks,

much of continental North America, nearly the entire

sub-Arctic (poleward of 608N), most of Europe, and

much of Siberia. Granger causality analysis (Fig. 5d)

has a more limited large-scale response than that given

by lagged regression; notably, Granger causality does

not show a significant response over Siberia and

shows a weaker, less spatially homogeneous response

in the sub-Arctic region when compared to lagged re-

gression. Previous work has linked changes in mid-

latitude circulation and sea surface temperatures to

warmer Arctic temperatures (e.g., Graversen 2006;

Screen et al. 2012; Wettstein and Deser 2014; Baggett

and Lee 2015); however, as Fig. 5 demonstrates, the
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details of these circulation changes differ with different

methodologies.

5. Discussion

In this manuscript, we have tried to present a clear,

concise, and compelling argument for an increased use

of Granger causality analysis in climate variability

studies. We have emphasized Granger causality’s su-

perior performance, as compared to lagged regression,

in situations in which one or more variables has sub-

stantial memory. However, like any approach, Granger

causality analysis has its own limitations. One obvious

drawback is the possibility of a confounding variable—

that is, an additional process or variable could be

driving the modeled variables (e.g., in the bivariate

case, a third processZ, could influence the independent

X and dependent Y variables—Z/X, Z/Y). Using

the bivariate case as an example, Granger causality

may state that X causes Y, even though Z actually

drives both X and Y. Similarly, Granger causality does

not account for indirect effects or mediating variables.

Returning to the bivariate example, a process X may

indirectly drive Y via a third process Z (X/Z/Y).

Again, Granger causality may state that X drives Y

without including the necessary link Z. As discussed

here, basic Granger causality analysis also requires

assumptions of linear and stationary processes. An out-

of-sample approach to Granger causality tests (e.g.,

Attanasio et al. 2012; Pasini et al. 2012; Attanasio et al.

2013) provides a framework for applying Granger

causality to nonstationary processes. Cointegration

(e.g., Johansen and Juselius 1990; Kaufmann and Stern

2002) is another approach to analyzing causality in

FIG. 5. Using (a),(b) lagged regression and (c),(d) Granger causality to test the hypothesis that (left) polar mean

temperature drives 700-hPa zonal winds and (right) 700-hPa zonal winds drive polar mean temperature. Red in-

dicates a significant lagged relationship identified at up to 20 days (k5 4). Significance is assessed at 95%.
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nonstationary processes that tend to vary together and

have stochastic trends.

Moreover, Granger causality is simply one approach

to causal analysis. Granger causality provides an op-

portunity for incremental improvement to the already-

extant lagged regression analysis framework that has

gained so much traction in climate variability studies.

Multiple regression-based approaches, such as vector

autoregressive (VAR) models, have built upon this

Granger causality approach and have been applied to

climate variability studies focused on the influence of

sea ice on midlatitude circulation (e.g., Strong et al.

2009; Matthewman and Magnusdottir 2011), intra-

seasonal variability of sea ice (e.g., Wang et al. 2016),

paleoclimate data (Davidson et al. 2016), and the re-

lationship between the North Atlantic Oscillation and

North Atlantic sea surface temperatures (e.g., Wang

et al. 2004).

Even more recently, probabilistic graphical models

based on Pearl causality have been introduced to cli-

mate science and represent the current state of the art in

causal detection theory [see Ebert-Uphoff and Deng

(2012) for a thorough introduction of graphical mod-

els in climate research]. This graphical approach to

causality was first proposed in the 1980s (e.g., Rebane

and Pearl 1987; Pearl 1988) and has since been re-

fined and further developed. (e.g., Spirtes et al. 1991).

Granger causality has, in fact, been incorporated into

these graphical models, creating an approach known

as graphical Granger models (e.g., Arnold et al. 2007).

Ebert-Uphoff and Deng (2012) and Runge et al. (2014)

have demonstrated the utility of these graphical ap-

proaches to causality in climate science, and we en-

courage readers to refer to these papers for more

thorough discussions of these graphical models and

their advantages in climate variability studies.

6. Conclusions

While lagged regression is a straightforward, popular,

and often effective analysis technique in climate vari-

ability studies, it is vulnerable to overstating causal re-

lationships in situations in which one or more datasets

has significant memory (e.g., Runge et al. 2014). We

use a Monte Carlo model to demonstrate the following:

1) Granger causality outperforms (i.e., lowers the risk

of false detection) lagged linear regression when one

or more variables has substantial memory;

2) Granger causality and lagged linear regression yield

similar results when there is a true causal relationship

between the variables (except in the case of very high

autocorrelation); and

3) Granger causality analysis is only slightly more

challenging to implement than traditional lagged

linear regression analysis, as it simply consists of a

lagged autoregression and a lagged multiple linear

regression.

These general differences between lagged regression

and Granger causality are also shown to be relevant for

two large-scale climate dynamics examples, demon-

strating that Granger causality analysis has useful and

viable applications in climate variability studies.
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