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ABSTRACT: Neural networks (NN) have become an important tool for prediction tasks}both regression and classification}
in environmental science. Since many environmental-science problems involve life-or-death decisions and policy making,
it is crucial to provide not only predictions but also an estimate of the uncertainty in the predictions. Until recently,
very few tools were available to provide uncertainty quantification (UQ) for NN predictions. However, in recent years the
computer-science field has developed numerous UQ approaches, and several research groups are exploring how to apply
these approaches in environmental science. We provide an accessible introduction to six of these UQ approaches, then fo-
cus on tools for the next step, namely, to answer the question:Once we obtain an uncertainty estimate (using any approach),
how do we know whether it is good or bad? To answer this question, we highlight four evaluation graphics and eight evalua-
tion scores that are well suited for evaluating and comparing uncertainty estimates (NN based or otherwise) for environ-
mental-science applications. We demonstrate the UQ approaches and UQ-evaluation methods for two real-world
problems: 1) estimating vertical profiles of atmospheric dewpoint (a regression task) and 2) predicting convection
over Taiwan based on Himawari-8 satellite imagery (a classification task). We also provide Jupyter notebooks with
Python code for implementing the UQ approaches and UQ-evaluation methods discussed herein. This article provides
the environmental-science community with the knowledge and tools to start incorporating the large number of emerging
UQmethods into their research.

SIGNIFICANCE STATEMENT: Neural networks are used for many environmental-science applications, some
involving life-or-death decision-making. In recent years new methods have been developed to provide much-needed
uncertainty estimates for NN predictions. We seek to accelerate the adoption of these methods in the environmental-
science community with an accessible introduction to 1) methods for computing uncertainty estimates in NN predictions
and 2) methods for evaluating such estimates.
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1. Introduction

Neural networks (NN), a type of machine learning (ML)
model, have become widely used in environmental science, in-
cluding both regression and classification tasks. Many such
tasks}predicting ocean-wave heights, rapid intensification of
hurricanes, formation of tornadoes, etc.}are crucial for decision-
making and policy making. In order for people to make such
important decisions, MLmodels need to provide not only the pre-
dicted outcome, but also the uncertainty in the prediction.

Because accurate and reliable weather forecasts are impor-
tant to a wide range of communities, the meteorology com-
munity long ago recognized the importance of probabilistic
predictions. Numerical weather prediction (NWP) models are

often run in ensemble mode to produce multiple forecasts; av-
eraging over the ensemble often improves forecast quality,
but the ensemble can also be used to quantify forecast uncer-
tainty. To calibrate the forecast uncertainty}for example, to
correct biases in the ensemble spread}many statistical post-
processing techniques have been developed (see Vannitsem
et al. 2021 for an overview). Most of these techniques are
agnostic to the underlying models and can therefore be trivi-
ally adapted to NN models rather than NWP models.

Until recently, very few tools existed to provide uncertainty
quantification (UQ) for NN predictions. However, in recent
years the computer-science field has made rapid advance-
ments in this area. The current article aims to help the envi-
ronmental-science community apply UQ techniques for NNs
and relate them to preexisting techniques for postprocessing
NWP ensembles.

To achieve this, we first provide a background on what types
of uncertainty can be estimated by NNs for environmental-
science applications (section 2). Next, we provide an accessible
introduction to six UQ approaches (section 3): parametric distri-
butional prediction (PDP), nonparametric distributional predi-
ction (NPDP), ensemble prediction (EP), multimodel (MM),
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Monte Carlo (MC) dropout, and Bayesian neural networks
(BNN). In section 4 we discuss tools for the next step, namely
answering the question: Once we obtain an uncertainty estimate
(using any approach), how we do evaluate the quality of this
estimate? We highlight four evaluation graphics and eight evalu-
ation scores that are well suited for environmental-science
applications:

• The attributes diagram, including the mean-squared-error
(MSE) skill score (MSESS);

• the spread–skill plot, including the spread–skill ratio (SSRAT)
and spread–skill reliability (SSREL);

• the discard test, including the monotonicity fraction (MF)
and average discard improvement (DI);

• the probability integral transform (PIT) histogram, including
the calibration deviation (PITD);

• the continuous ranked probability score (CRPS); and
• the ignorance score (IGN).

In sections 5 and 6 we demonstrate the UQ approaches and
UQ-evaluation methods for two real-world problems: esti-
mating vertical profiles of atmospheric dewpoint (a regression
task) and predicting convection over Taiwan based on satel-
lite imagery (a classification task). The first application builds
UQ into the work of Stock (2021), while the second builds UQ
into the work of Lagerquist et al. (2021). Finally, in section 7,
we provide insights gained throughout this work on both the
UQ approaches and UQ-evaluation methods.

This article is accompanied by four Jupyter notebooks for
implementing both the UQ approaches and UQ-evaluation
methods discussed (https://github.com/thunderhoser/cira_uq4ml).
For classification tasks, the MC dropout notebook (classification_
mc_dropout.ipynb) implements the MC-dropout method, and
the NPDP notebook (classification_npdp.ipynb) implements
quantile regression with a special NN architecture that prevents
quantile crossing. Both notebooks also implement the spread–
skill plot and discard test. For regression tasks, there are two
notebooks, both using six synthetic datasets and three UQ ap-
proaches (PDP, EP, and MC dropout). The first (regression_
multi_datasets.ipynb) allows the user to select one UQ approach,
then compares the results across the datasets, using all evaluation
tools (graphics and scores) listed above. The second (regression_
multi_model.ipynb) allows the user to select a dataset, then com-
pares the results across three UQ approaches using all evaluation
tools.

2. Background

a. Which uncertainties are we trying to capture?

The motivation for quantifying uncertainty in ML is to pro-
vide information on how much to trust the model’s prediction.
To identify what types of uncertainty we can expect an ML
model to provide, first we must look at the model structure,
sources of uncertainty, and pieces of information the model
can use to quantify uncertainty (Fig. 1). In Fig. 1 the training
data consist of pairs (x, ytrue); x is the input vector, containing
predictors (or “features”), and ytrue is the desired output (or
“target value” or “label” or “ground truth”). During training,

the ML model learns to generate better and better predictions by
minimizing a loss function, which measures the error between the
target values ytrue and predicted values ypred. At inference time,
a deterministic ML model produces one prediction per data
sample x. This approach works in an idealized setting, where
1) the model can perfectly learn the conditional distribution
ytrue|x during training; 2) this relationship does not change
between the training and inference data; and 3) the predictor
distribution x does not change between the training and infer-
ence data.

However, the idealized setting rarely occurs, for several
reasons. First, datasets include numerous sources of uncer-
tainty, leading to many ytrue possibilities for each predictor
vector x; second, different model structures may compromise
model performance; third, the predictor distribution at infer-
ence time may contain out-of-regime samples, forcing the
model to extrapolate outside the range of the training data;
fourth, the relationship ytrue|x might change between the
training and inference data.

Ideally, a model’s uncertainty estimates would account for
contributions from all four error sources. However, only two
pieces of information are available to derive uncertainty esti-
mates: the data and the ML model. Thus, we task the ML
model with providing an uncertainty estimate that accounts
for two error sources (Fig. 2). The first is internal variability
in the data, resulting from stochasticity in physical processes.
This manifests as spread in the target value ytrue for a given
predictor vector x (middle purple container in Fig. 1; left side
of Fig. 2). The model can learn this spread and quantify it for
each data sample. The second source of uncertainty is out-of-
regime error; the model should produce higher uncertainty
estimates for data samples x outside the range of the training
data (rightmost purple container in Fig. 1; right side of Fig. 2).

Although we want the ML model to simultaneously quan-
tify uncertainties stemming from all error sources, we empha-
size that the first step is to reduce these errors as much as
possible. This can be done by 1) collecting data from all rele-
vant regimes, to minimize the occurrence of out-of-regime
data samples at inference time; 2) carefully processing the
data, including quality control; and 3) optimizing the model
structure to achieve the best performance possible.

b. Aleatory versus epistemic uncertainty

In environmental science, uncertainty sources are often divided
into four categories (Beucler et al. 2021): 1) stochastic uncertainty,
due to internal variability such as randomness arising from the
chaotic nature of fluid flows; 2) observational uncertainty,
due to measurement and representation errors; 3) structural
uncertainty, due to incorrect model structure; and 4) para-
metric uncertainty, due to incorrect model parameters.

Other classifications distinguish only two types of uncertainty}
aleatory and epistemic}but the line dividing the two types differs
by discipline. Figure 3 illustrates this difference for two disciplines:
mathematics versus ML. In the original math context, aleatory
and epistemic uncertainty are defined as follows:

• Aleatory comes from the Latin word alea, which refers to a
game of dice. Aleatory uncertainty in mathematics refers to the
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stochastic component of uncertainty that stems from random-
ness in the data-generation process, such as the chaotic nature
of fluid flows in the atmosphere or random effects in an ob-
serving system. This component is also known as stochastic or
irreducible uncertainty, since no deterministic model can antic-
ipate the effect of random processes.

• Epistemic comes from the Greek word epistēmē, which means
knowledge. Epistemic uncertainty in mathematics denotes all
uncertainty that is not due to random processes, that is, all un-
certainty from our lack of knowledge about the observed sys-
tem. Since better knowledge}including improvements to the
model and observing system}can reduce this uncertainty, it is
also known as reducible uncertainty.

In contrast, ML approaches typically assume that 1) only
the data are provided, with no information on the data-

generation process; 2) the data cannot be changed. Based
on this limitation, the ML literature draws the line between alea-
tory and epistemic uncertainty based on whether the uncertainty
originates from the data, regardless of whether it is due to sto-
chastic processes or lack of knowledge (Fig. 3). This difference
between definitions can lead to great confusion. Henceforth, we
use the terms ML-aleatory and ML-epistemic to refer to the
ML version of those definitions.

To make matters worse, the ML literature sometimes uses
alternate terms}stochastic or irreducible uncertainty}for the
ML-aleatory definition, which is truly misleading. Hüllermeier
and Waegeman (2021) nicely illustrate the consequences of
using the term irreducible for ML-aleatory uncertainty: “This
characterization, while evident at first sight, may appear
somewhat blurry upon closer inspection. What does ‘reducible’
actually mean?” The impact of changing only the ML model

FIG. 1. Information flow for an ML model with UQ (i.e., one that provides both a central prediction and uncertainty information). The
uncertainty information may take one of three forms: an ensemble of predictions (considered samples from the ypred distribution), a para-
metric summary of the ypred distribution (e.g., the mean and standard deviation, assuming a normal distribution), or a nonparametric sum-
mary of the ypred distribution (e.g., a set of quantiles). Blue containers represent data, the red box represents the ML model, and purple
containers represent model output. To indicate how much users should trust the ML model’s prediction, UQ approaches seek to estimate
the total uncertainty present for each data sample.
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is obvious: a better ML model reduces epistemic uncertainty
while leaving aleatory uncertainty unchanged, according to
both the math and ML definitions. However, Hüllermeier and
Waegeman (2021) point out that a change of the dataset can
have less obvious consequences. Adding more predictors to the
dataset1}without increasing sample size}is likely to decrease
ML-aleatory uncertainty by increasing information about the
system’s state, but at the same time increasing ML-epistemic
uncertainty, since the ML model might not be able to represent
more complex relationships without additional data samples.
In this scenario, the supposedly irreducible (ML-aleatory) un-
certainty was reduced. How can this be? What appears to be a
contradiction is really just a demonstration of why the terms
irreducible and stochastic should be avoided as aliases for the
ML-aleatory component. Finally, note that while the mathema-
tical definition assigns any uncertainty uniquely to either the
aleatory or epistemic type for a given system (at least in theory),
the ML definition is context dependent. As demonstrated above,
ML-aleatory uncertainty can become ML-epistemic, and vice
versa, by a change of dataset.

1) WHY DO WE CARE ABOUT DISTINGUISHING

ML-ALEATORY VERSUSML-EPISTEMIC UNCERTAINTY?

Knowing how much of the total uncertainty is ML-aleatory
versus ML-epistemic can provide ML developers with valu-
able information on how to reduce uncertainty (Ortiz et al.

2022). If ML-aleatory uncertainty is high, we should focus on
making the dataset more information-dense, for example,
add predictors or improve data quality. If ML-aleatory uncer-
tainty is low and ML-epistemic uncertainty is high, we should
focus on improving the model. This can be done by changing
the model structure or adding samples to the dataset; the lat-
ter reduces out-of-regime errors. Furthermore, understanding
the difference between ML-aleatory and ML-epistemic un-
certainty is crucial for understanding the limitations of UQ ap-
proaches, as many approaches cannot capture ML-epistemic
uncertainty. As a general rule, non-Bayesian (maximum
likelihood) approaches can capture only ML-aleatory un-
certainty, while Bayesian approaches, such as MC dropout
and BNNs, can capture both types (Dürr et al. 2020). Although
Bayesian approaches can capture both types of uncertainty, it is
unclear how well they do so in practice. This is a topic of active
research}one more reason why it is crucial for environmental
scientists to use/develop good practices for evaluating uncer-
tainty estimates.

2) HOW CAN WE DISENTANGLE ML-ALEATORY AND

ML-EPISTEMIC UNCERTAINTY?

Non-Bayesian methods can capture only ML-aleatory un-
certainty, negating this issue. However, Bayesian methods
can capture both ML-aleatory and ML-epistemic uncertainty.
Ortiz et al. (2022) used a method to separate total-uncertainty
estimates from a BNN into ML-aleatory and ML-epistemic
components, demonstrating their method for precipitation-
type retrieval from satellite data. We discuss Ortiz et al.
(2022) further in section 3f.

FIG. 2. Illustration of uncertainty due to internal variability vs out-of-regime error, based on synthetic data. The training dataset is
shown as blue dots and has two issues: varying randomness in y (for all x) and varying sampling rate in x (for x. 2). Predictions from a de-
terministic NN are shown in red. Similar illustrations are often shown in ML to illustrate the concepts of aleatory vs epistemic uncertainty.
Note that this is a highly idealized example, as it neglects to illustrate other types of aleatory and epistemic uncertainty. For this idealized
example the definitions of aleatory and epistemic uncertainty from mathematics and ML align.

1 Assuming that the new predictors are not redundant with the
preexisting predictors, i.e., that the new predictors contain new
information.
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c. Representing and communicating uncertainty

The estimated uncertainty in the ytrue distribution can be
represented in three different ways: the parameters of a ca-
nonical probability distribution, such as the normal distribu-
tion; nonparametric summary statistics (e.g., histogram bin
frequencies or quantiles) of the ytrue distribution; or an explicit
ensemble, containing many samples from the ytrue distribution.
In the rest of this article, we refer to the estimated ytrue distri-
bution}regardless of which representation is used}as the
ypred distribution or predicted distribution.

It is possible to convert between different representations
of the ypred distribution. An ensemble can be converted to non-
parametric summary statistics via simple equations, or to parame-
ters of a canonical distribution via maximum-likelihood estimation.
Parameters of a canonical distribution can be converted to an
ensemble via sampling,2 or to nonparametric summary statis-
tics via closed-form equations.3 It is more difficult to convert
nonparametric summary statistics to other representations,
and in this article we convert nonparametric summary statis-
tics only to parameters of a canonical distribution, not to en-
sembles. Specifically, we convert quantiles to the mean and
standard deviation of a normal distribution, using Eqs. (14)
and (15) in Wan et al. (2014).

For visualization purposes, two common measures of un-
certainty are the standard deviation and 95% confidence in-
terval. For highly nonnormal distributions, showing additional
measures}such as the skewness, a set of quantiles, or a sub-
set of ensemble members}might also be useful. The best
ways to communicate uncertainty with different users, such as
forecasters and emergency managers, is currently a topic of
active research (Rogers et al. 2023; Serr et al. 2023; Demuth
et al. 2023).

3. Approaches for UQ in neural networks

We describe six popular UQ approaches: PDP, NPDP, EP,
MM, MC dropout, and BNN. All six approaches can be used
for both regression and classification. Although more UQ ap-
proaches exist, most environmental-science applications use
some form or combination of the six listed. Applying these to
real-world environmental-science applications, section 5 dem-
onstrates PDP, EP, and MC dropout, and section 6 demon-
strates NPDP and MC dropout.

The first three approaches are non-Bayesian and are sum-
marized in Fig. 4. These approaches have been used exten-
sively by the meteorology community, although mostly in a
non-ML setting, to postprocess NWP ensembles. PDP as-
sumes that the ytrue distribution matches a canonical proba-
bility distribution D and estimates the parameters of D ;
NPDP estimates summary statistics (e.g., the histogram or a
set of quantiles) of the ytrue distribution without assuming the
form of the distribution; and EP generates many predictions
to approximate the ytrue distribution. Because these approaches
are non-Bayesian and single model, they can capture only ML-
aleatory, not ML-epistemic, uncertainty.

The multimodel approach (also non-Bayesian and sum-
marized in Fig. 4) has been used to postprocess NWP en-
sembles but can be used to postprocess NN ensembles as
well. If the individual NNs are trained with a deterministic
loss function, the multimodel ensemble cannot capture ML-
aleatory uncertainty. However, since the NNs are trained
independently, the ensemble may capture ML-epistemic un-
certainty.4 The multimodel approach can be used in tandem

FIG. 3. The aleatory/epistemic divide differs among disciplines (Bevan 2022; Hüllermeier and Waegeman 2021).
In the original math definition, the dividing line is whether the origin of uncertainty is stochastic. In the ML definition,
the dividing line is whether the origin of uncertainty is in the given dataset. This is because in many ML applications
the data are the only information available}i.e., we do not know about the data-generation process and have no
ability to improve the dataset. However, environmental science contains many examples where neither of these condi-
tions is true. The difference between the math and ML definitions can lead to great confusion.

2 For the normal distribution, see numpy.random.normal in
Python.

3 For the normal distribution, scipy.stats.norm in Python.

4 For an out-of-regime data sample, because the NNs do not
have enough training data to learn the true relationship, they are
more sensitive to randomly initialized weights. Thus, for an out-of-
regime sample, the NNs should produce very different predictions,
leading to a larger spread for out-of-regime samples than for in-
regime samples.
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with any of the three UQ approaches, allowing both types
of uncertainty to be captured.

The last two approaches are Bayesian techniques devel-
oped by the computer-science community specifically for
NNs (Fig. 5). Both of these approaches}MC dropout and
BNNs}use the NN itself to estimate ML-epistemic uncer-
tainty, specifically by randomly selecting which model pa-
rameters (e.g., neuron weights) to use at inference time.
When the NN is trained with a deterministic loss function,

Bayesian approaches only capture ML-epistemic uncer-
tainty; however, Bayesian approaches can easily be modified
to incorporate any of the first three approaches, allowing
them to capture both types of uncertainty.

a. PDP

PDP involves estimating the parameters of a canonical
distribution, chosen a priori by the user. PDP can be used
for both regression and classification, as long as the chosen

FIG. 4. Summary schematics and key ideas for non-Bayesian UQ approaches. These approaches have been used extensively by the meteo-
rology community, although mostly in a non-ML setting, to postprocess NWP ensembles.
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distribution makes sense for the problem type.5 A popular
choice is the normal distribution, which has two parameters: the
mean and standard deviation. In this case the NN estimates the
mean and standard deviation for each data sample, with the stan-
dard deviation representing the NN’s uncertainty.

There are two popular optimization methods for PDP. One
is the maximum-likelihood approach, where parameters are
chosen to maximize the probability of the observed data given
the fitted distribution (Van Schaeybroeck and Vannitsem
2015; Bremnes 2020; Veldkamp et al. 2021; Schulz and Lerch
2022). As an example of this method, Barnes et al. (2021)
used NNs with the sinh–arcsinh (SHASH) distribution for a
problem with synthetic climate data. They adjusted the four
distribution parameters}location, scale, skewness, and tail
weight}to minimize the negative-log-likelihood loss function.
Another method is to choose parameters that minimize distri-
butional differences, most often using a closed form of the
CRPS (see section 4e). Some examples are Van Schaeybroeck
and Vannitsem (2015), Rasp and Lerch (2018), Baran and
Baran (2021), Ghazvinian et al. (2021), Chapman et al. (2022),
and Schulz and Lerch (2022). Studies comparing the two meth-
ods mostly favor the CRPS over the maximum-likelihood ap-
proach (Van Schaeybroeck and Vannitsem 2015; Table 5 of
Veldkamp et al. 2021; Table 2 of Schulz and Lerch 2022). For
Python code implementing PDP, see the regression notebooks.

Figure 6 shows sample results for PDP with NNs, one using
the normal distribution and one using the SHASH distribu-
tion. The synthetic dataset contains one predictor x and one
target y, with asymmetry and heteroskedasticity (Fig. 6a).
Both NNs skillfully predict the mean, small uncertainty for
x values with small spread, and large uncertainty for x values
with large spread (Figs. 6b,c). For x 5 1, where the marginal
distribution (y given x 5 1) is nearly normal, the two NNs
have similar performance (Fig. 6d). For x 5 3, where the mar-
ginal distribution is flatter than normal but still nearly sym-
metric, the two NNs again have similar performance (Fig. 6e).
However, for x 5 7, where the marginal distribution is highly
skewed, the SHASH NN clearly outperforms the normal NN
(Fig. 6f). This result highlights the advantage of a more flex-
ible distribution. Figures 6b and 6c also highlight the advan-
tage of a more flexible distribution around x 5 7, where the
SHASH NN captures the asymmetry and large spread bet-
ter than the normal NN. We note that the purpose of this
comparison is not to suggest that SHASH is the best distri-
bution for all applications or even a particular application;
rather, our purpose is to highlight the advantages of a more
flexible distribution, such as SHASH, over the normal
distribution.

b. NPDP

Two common NPDP methods are quantized softmax (QS)
and quantile regression (QR). QS is used in several atmospheric-
science applications (Wimmers et al. 2019; Scheuerer et al. 2020;
Veldkamp et al. 2021) and involves turning a regression

FIG. 5. Summary schematics and key ideas for Bayesian UQ approaches, developed by the computer-science community specifically for NNs.

5 For example, the normal distribution should not be used for a
classification problem, because it would allow class probabilities
outside the range [0, 1].
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problem into a classification problem via the following
procedure:

1) Quantize the target variable y into K mutually exclusive
and collectively exhaustive (MECE) bins. For example, if
y is radar reflectivity (dBZ), the bins could be ,0; [0, 1);
[1, 2); … ; [74, 75); and $75.

2) Each bin is considered one class, and the NN performs
classification, using the softmax activation function. Soft-
max (section 6.2.2.3 of Goodfellow et al. 2016) ensures
that the NN’s K confidence scores all range from [0, 1]
and sum to 1.0, allowing them to be interpreted as proba-
bilities of the MECE classes.

QR involves directly predicting several quantiles of a prob-
ability distribution; it can be used for both regression and clas-
sification. QR has recently gained wide popularity for NNs
(Bremnes 2020; Yu et al. 2020; Schulz and Lerch 2022). The
“trick” is to train the NN with the quantile loss function:

L 5
q|ytrue 2 yqpred|, if ytrue . yqpred;

(1 2 q)|ytrue 2 yqpred|, if ytrue # yqpred:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

The desired quantile level is q 2 [0, 1], and yqpred is the estimated
value at quantile level q. Large values of q penalize underpre-
diction (yqpred , ytrue) more than overprediction (yqpred . ytrue),

FIG. 6. Results for two NNs trained with different probability distributions. One NN uses a normal distribution, and
one uses a SHASH distribution. (a) Scatterplot of the data. (b) Observations and predictions from normal NN.
(c) Observations and predictions from SHASH NN. (d) Marginal distribution of observations and predictions from
both NNs for x5 1. (e) As in (d), but for x5 3. (f) As in (e), but for x5 7.
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encouraging the model to output large yqpred. Conversely, small
values of q encourage the model to output small yqpred.

To estimate multiple quantiles, a common approach is to
train a separate NN for each quantile. However, because the
different NNs are trained independently, this approach does
not prevent quantile crossing, where yqpred decreases with q
(e.g., the 25th percentile rainfall prediction is 30 mm, but the
75th percentile prediction is 20 mm). Two approaches have
been developed to prevent quantile crossing with NNs.
Bremnes (2020) averaged the predictions for each quantile
level over 10 NNs, each trained with different random initiali-
zations and thus converging to different solutions. Without
model averaging, quantile crossing occurred for 0.22% of
cases; with model averaging, quantile crossing never occurred
in their dataset. However, the method of Bremnes (2020) is
not guaranteed to prevent crossing. Schulz and Lerch (2022)
used an NN to predict Bernstein polynomials, which were
transformed to quantiles in a postprocessing step. They noted
that if the Bernstein coefficients do not cross}that is, are
monotonically nondecreasing with q}then the yqpred also do
not cross. Thus, Schulz and Lerch (2022) trained the NN to
predict the increment between Bernstein coefficients for each
pair of consecutive q values, using the softplus activation func-
tion to ensure that each increment is nonnegative. We note
that quantile-regression forests (Meinshausen and Ridgeway
2006) prevent quantile crossing by default, but the current
work focuses on NNs instead of random forests.

Our solution is similar to Schulz and Lerch (2022), except that
we encode all logic directly in the NN architecture. Thus, our NN
outputs are already quantile-based estimates, with no need for
postprocessing. To satisfy the monotonicity constraint}namely,
that y

qi
pred $ y

qi21
pred for quantile levels qi . qi21}we express

yqipred as the sum of yqi21
pred and a nonnegative term. Specifi-

cally, we implement the following equation:

y
qi
pred 5 y

qi21
pred 1 ReLU(Dyqipred), (2)

where ReLU is the rectified linear unit (Nair and Hinton
2010), defined as ReLU(w)5 max(0, w).

To implement Eq. (2) inside the NN, we allow the NN to es-
timate Dy

qi
pred freely, use a ReLU layer to make this increment

nonnegative, then use an Add layer to achieve the addition on
the right-hand side. (For a schematic representation of this
procedure, see Fig. 17b and the accompanying discussion in
section 6a.) For Python code, see the NPDP notebook for
classification.

c. Ensemble prediction

In this approach, a single NN is trained to produce an en-
semble that captures the spread in ytrue. Each output neuron
corresponds to one ensemble member. To encourage appro-
priate spread in the ensemble, the NN must be trained with a
custom loss function that minimizes distributional differences
(i.e., differences between the ytrue and ypred distributions). A
common loss function for this approach is the CRPS (section 4e).
For Python code that implements EP with the CRPS loss, see
the regression notebooks.

d. Multimodel approach

The multimodel approach involves training several NNs, each
with the same data and structure but a different initialization}
that is, set of random initial weights. Each NN converges to a
different solution}that is, set of final trained weights}yielding
a different prediction for the same data sample. The ensemble
size is the number of NNs.

Although quite popular in environmental science (e.g.,
Doblas-Reyes et al. 2005; DelSole et al. 2013; Beck et al.
2016), the multimodel approach has two major disadvantages.
First, because the NNs are trained independently and not op-
timized to produce good uncertainty estimates, they often
perform poorly. Second, the multimodel approach is compu-
tationally expensive, because several NNs, instead of just one,
must be trained and then loaded at inference time. We note
that any other UQ method can be combined with the multi-
model approach}for example, QR (Bremnes 2020) or PDP
(Rasp and Lerch 2018)}often leading to better results.

e. MC dropout

Dropout regularization (or just “dropout”) was invented to
prevent overfitting in NNs (Hinton et al. 2012). During each
forward pass through the NN, a random subset of neurons
is dropped out, leaving the remaining neurons to represent
useful features of the predictor data. Because the remaining
neurons must still be able to represent predictor features ade-
quately, dropout forces all neurons to learn more indepen-
dently of each other, creating a pseudoensemble. In common
practice, dropout is used only during training; at inference
time all neurons are used, making the NN deterministic. How-
ever, dropout can also be used at inference time, making the
NN stochastic and producing a predicted distribution by run-
ning the NN many times, which is called MC dropout (Gal
and Ghahramani 2016).

The main advantage of MC dropout is ease of implementa-
tion. Keras has a predefined dropout layer,6 and passing the
argument training 5 true during model construction ensures
that dropout will be used at inference time, as shown in the
MC and regression notebooks. However, MC dropout has
three major disadvantages. First, sampling (i.e., running the
NN many times in inference mode) is computationally expen-
sive and the correct hyperparameters (which dropout rate to
use in each layer) are unclear. Second, although MC dropout
captures out-of-regime uncertainty (a type of ML-epistemic
uncertainty) well, it does not capture ML-aleatory uncertainty
well (Bihlo 2021; Klotz et al. 2022; Garg et al. 2022). How-
ever, MC dropout can be combined with postprocessing
methods to provide more holistic uncertainty estimates (Sato
et al. 2021; Yagli et al. 2022). Third, MC dropout often per-
forms poorly. This is because MC dropout performs UQ in a
post hoc manner, using a regularization method designed to
be turned off at inference time. Thus, one hopes that the
model will produce good uncertainty estimates, without

6 Other NN libraries, such as PyTorch, also have a Dropout
layer. However, we have not experimented with dropout at infer-
ence time in these libraries.
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directly optimizing it to do so. In fact, we are unaware of an
atmospheric-science application where MC dropout performs
better than another UQ method. However, due to its ease of
implementation, MC dropout is still popular and can easily be
used as a baseline to compare against other UQ methods.

MC dropout can be used simultaneously with any of the
other UQ approaches, allowing the model to capture both
ML-epistemic and ML-aleatory uncertainty. To achieve this,
simply add dropout to the desired layers in the original NN,
passing the argument training 5 true to ensure that dropout
will be used at inference time.

f. BNN

BNNs are gaining popularity as a UQ approach, because
they can capture both ML-aleatory and ML-epistemic uncer-
tainty; however, they are conceptually and computationally
complex. Although MC dropout is also a Bayesian method
(Gal and Ghahramani 2016), BNNs are more flexible and
may provide more robust uncertainty estimates (Salama 2021;
Jospin et al. 2022). BNNs require both a functional model
(a traditional NN) and a stochastic model; during training,
they use Bayesian inference to sample from the stochastic
model. A traditional NN learns one value for each model pa-
rameter, but a BNN learns a full distribution for each model
parameter, determined by fitting a canonical distribution such
as the normal. When trained with a deterministic loss func-
tion, BNNs capture only ML-epistemic uncertainty, like the
MC-dropout approach used in this work. However, also like
MC dropout, BNNs can be combined with PDP, NPDP, or
EP to capture ML-aleatory uncertainty as well (see Fig. 5
bottom).

For a detailed tutorial on BNNs, see Jospin et al. (2022). In
the atmospheric-science literature, Orescanin et al. (2021) and
Ortiz et al. (2022) used BNNs to classify precipitation type
from satellite data. Orescanin et al. (2021) covers a more basic
implementation of BNNs; Ortiz et al. (2022) expands on the
first work by combining the BNN with PDP, allowing it to
capture ML-aleatory uncertainty, and introducing a method
to separate the BNN’s total-uncertainty estimate into ML-
aleatory and ML-epistemic components. They make 25 pre-
dictions per data sample}each with a different set of NN
parameters, sampled from the fitted distribution of weights
for each neuron}yielding a 25-member ensemble. Ortiz et al.
(2022) show that 1) BNNs can provide skillful mean predic-
tions and uncertainty estimates; 2) decomposing the uncer-
tainty estimates allows users to make informed decisions, not
only on how to best use the model’s predictions, but also on
how to improve the whole ML pipeline, from data collection
and data processing to model training and hyperparameter
tuning.

Although BNNs can be powerful tools for UQ, their practi-
cal utility is still being investigated. BNNs have more model
parameters than traditional NNs}K weights per neuron for a
K-parameter canonical distribution, rather than one weight
per neuron. Also, training a BNN involves Bayesian infer-
ence, which is computationally expensive and often fails
due to memory limitations (Sato et al. 2021). Due to their

complexity, we will not use BNNs in the case studies pre-
sented here, leaving this as future work and referring readers
to the cited literature.

4. Methods for evaluating uncertainty estimates

This section discusses graphics and scoring metrics that are
useful for evaluating uncertainty estimates. The graphics al-
low for deeper insight than scoring metrics (single-number
summaries), while the scores allow for easy comparison of
different methods/models. One of the evaluation graphics
presented}the attributes diagram}pertains to the central
(mean) prediction, while the others pertain to uncertainty es-
timates. We include the attributes diagram because, even if
uncertainty is the main focus, evaluating the main predictions
is important as well. If the mean predictions are poor, then
1) the uncertainty estimates are likely to be poor as well;
2) even if the uncertainty estimates are skillful, they are of lit-
tle use. All methods discussed in this section are summarized
in Table 1.

All evaluation methods require summary statistics from the
ypred distribution: the mean, standard deviation, cumulative
distribution function (CDF) at one ytrue value, or probability
distribution function (PDF) at one ytrue value. As discussed in
section 2c, the mean and standard deviation can easily be ob-
tained from any ypred distribution, regardless of how it is rep-
resented. Meanwhile, the CDF can easily be obtained from
parameters of a canonical probability distribution7 or from an
ensemble.8 The CDF can also be obtained from nonparamet-
ric summary statistics like quantiles, as the quantile function
is the inverse CDF. Last, the PDF can be easily obtained from
the CDF via differentiation.

We demonstrate all evaluation methods on a regression
task with a synthetic dataset (Fig. 6a), using four UQ methods
that cover three UQ approaches (PDP, EP, and MC dropout).
For PDP, we use two different canonical distributions, normal
and SHASH; for EP, we use the CRPS loss function (see
section 4e for details); and for MC dropout, we use the MSE
loss function. Since we use a deterministic loss function, we
do not expect MC dropout to capture ML-aleatory uncer-
tainty. We use the same synthetic dataset to illustrate all eval-
uation tools except the CRPS score (Fig. 12), where we use a
dataset with a bimodal distribution to illustrate the advan-
tages of the EP-CRPS method. All eight metrics for all
four UQ methods are summarized in Table 2, and these re-
sults can be reproduced in the regression notebook for model
comparison.

a. The attributes diagram

1) FOR CLASSIFICATION TASKS

The attributes diagram (Fig. 7a) is a reliability curve with ad-
ditional elements. The reliability curve plots model-predicted

7 For the normal distribution, see scipy.stats.norm.cdf in
Python.

8 See statsmodels.distributions.empirical_distribution.ECDF in
Python.
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event probability9 on the x axis versus conditional observed
event frequency on the y axis.10 Each point corresponds to one
bin of event probabilities. For example, suppose that the event
is tornado occurrence; the reliability curve uses 10 probability
bins, equally spaced from 0.0 to 1.0; and one point on the curve
is (0.15, 0.4). Hence, in cases where the model predicts a tor-
nado probability between 10% and 20%, a tornado actually oc-
curs 40% of the time. The reliability curve is used to identify
conditional model bias, that is, bias as a function of the event
probability. Labels in Fig. 7a show how to identify conditional
model bias from the reliability curve}that is, for which event
probabilities the model has positive bias (overconfident), nega-
tive bias (underconfident), or zero bias.

The full attributes diagram is a reliability curve with four
additional elements: the 1-to-1 line, no-resolution line, clima-
tology line, and positive-skill area. The last is a polygon

defining where the Brier skill score (BSS) is positive. The BSS
is defined as (BSclimo 2 BS)/BSclimo, where BS and BSclimo are
the Brier scores of the model of interest and the climatologi-
cal model. The BSS ranges from (2‘, 1], and values. 0 signal
an improvement over climatology. For more details on the
attributes diagram, see Hsu and Murphy (1986).

2) FOR REGRESSION TASKS

Although the attributes diagram is typically used for classi-
fication, it can also be adapted for regression (Fig. 7b). Letting
the target variable be z, the x axis is the predicted z value and
the y axis is the conditional mean observed z value, both real

TABLE 1. Evaluation methods for the mean prediction (attributes diagram) and uncertainty estimates (all others). A check mark
under “Class?” indicates whether the evaluation method can be used for classification models, and “Reg?” indicates whether it can
be used for regression models. Evaluation graphics are in bold; evaluation scores are in italics. All methods are demonstrated in the
regression notebooks; if demonstrated in additional notebooks, these are included in square brackets.

Method Class? Reg? What it tells us

Attributes diagram � � Class: conditional bias (i.e., as a function of predicted event probability), BSS
Reg: conditional bias, MSESS
Ideal plot follows the 1-to-1 line (no conditional bias).

BSS � Brier score improvement over climatology. BSS . 0 means improvement;
BSS 5 1 means perfect model.

MSESS � See above, replacing “Brier score” with “MSE.”

Spread–skill plot � � RMSE of mean prediction as a function of ypred spread (i.e., standard deviation).
Ideal plot follows the 1-to-1 line (spread 5 RMSE). [classification notebooks]

SSRAT � � Spread/RMSE averaged over dataset. Ideal value 5 1.
SSREL � � Weighted distance between spread–skill plot and 1-to-1 line. Ideal value 5 0.

Discard test � � Model error vs discard fraction. Error should decrease whenever discard fraction
is increased. [classification notebooks]

MF � � How often error decreases when discard fraction is increased. Ideal value 5 1.
DI � � How much error decreases on average when discard fraction is increased. Higher

values are better.

PIT histogram � Distribution of PIT values. Ideal histogram is flat, indicating a uniform distribution.
PITD � PIT calibration-deviation score. Mean difference between actual bin frequency and

expected bin frequency for uniform histogram. Ideal value 5 0.

CRPS � � Mathematically: area between predicted and observed CDFs. Conceptually:
how well ypred distribution captures ytrue spread. Ideal value 5 0.

IGN � � How much ypred distribution is concentrated in the correct areas. Rewards
narrow ypred distribution containing the observation. Ideal value 5 0.

TABLE 2. Evaluation scores for various UQ methods on the
synthetic dataset. For each score, the best value is highlighted
in bold.

Score PDP_NORM PDP_SHASH EP_CRPS MC_DROPS

MSESS 0.847 0.844 0.849 0.843
SSRAT 0.769 0.759 0.789 0.363
SSREL 0.079 0.110 0.114 0.993
MF 1.000 1.000 1.000 0.300
DI 0.185 0.187 0.176 0.019
PITD 0.013 0.006 0.008 0.064
CRPS 0.748 0.737 0.717 0.892
IGN 1.678 1.728 1.775 4.886

9 When ML models are used for classification, by default they
produce confidence scores ranging from [0, 1], which are not true
probabilities. However, in this paper we adopt common parlance
and refer to confidence scores as probabilities.

10 The reliability curve uses only the central prediction}i.e., the
x coordinate is the mean of the predicted distribution, not a mea-
sure of uncertainty. However, UQ studies commonly employ the
reliability curve to evaluate the central prediction (e.g., Delle
Monache et al. 2013; Jospin et al. 2022; Chapman et al. 2022), so
we include it in this paper.
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numbers that in general can range from (2‘, 1‘). The
positive-skill area shows where the MSESS, defined analo-
gously to the BSS, is positive. Otherwise, the two flavors of
attributes diagram can be interpreted the same way.

b. The spread–skill plot

The spread–skill plot (Delle Monache et al. 2013) is analo-
gous to the reliability curve but evaluates uncertainty estimates
rather than mean predictions. Conceptually, the spread–skill
plot answers the question: “For a given predicted model spread,
what is the actual model error?” The spread–skill plot shows
the predicted model spread (x axis) versus the actual model
error (y axis), as in Fig. 8.

Specifically, the x axis is the mean standard deviation (SD)
of the model’s predicted distribution, while the y axis is the
root-mean-squared error (RMSE) of the model’s mean
prediction. Each point corresponds to one bin of spread
values. The two quantities are defined as follows for the
kth bin:

RMSEk 5
1
Nk

∑
Nk

i51
(ytruei 2 ypredi )2

[ ]1/2
;

SDk 5
1
Nk

∑
Nk

i51

1
M 2 1

∑
M

j51
(ypredi 2 ypredij )2

[ ]1/2
;

ypredi 5
1
M
∑
M

j51
ypredij :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

The term ytruei is the observed value for the ith example; ypredi

is the mean prediction for the ith example; ypredij is the jth pre-
diction for the ith example; Nk is the total number of exam-
ples in the kth bin; andM is the ensemble size.11

Labels in Fig. 8 show how to identify conditional bias in the
model’s uncertainty estimates}that is, for which spread values
the model is underdispersive (overconfident), overdispersive
(underconfident), or perfectly calibrated (spread–skill ratio5 1).
Additionally, if the spread frequency is most-populated where the
points on the spread–skill diagram lie on the 1:1 line, then the
uncertainty estimates are useful}for example, the samples
with the lowest (highest) spread have corresponding low
(high) error.

The quality of the spread–skill plot can be summarized by
two measures: SSREL and overall SSRAT. SSREL is the
weighted mean distance from the 1-to-1 line:

SSREL 5 ∑
K

k51

Nk

N
RMSEk 2 SDk

∣∣ ∣∣, (4)

where N is the total number of examples; K is the total number
of bins; and other variables are as in Eq. (3). SSREL varies from
[0, ‘), and the ideal value is 0. Meanwhile, SSRAT is the
spread–skill ratio averaged over the whole dataset:

(a) (b)

FIG. 7. (a) Attributes diagram for classification, where the relative frequency of occurrence of the event is 0.2. The
diagonal, horizontal, and vertical gray dashed lines are the 1-to-1, no-resolution, and climatology lines, respectively;
the blue-shaded polygon is the positive-skill area; and the green line is the NN’s reliability curve. Points below, above,
and on the 1-to-1 line correspond to probabilities where the NN is overconfident, underconfident, and perfectly cal-
ibrated, respectively. The inset histogram shows the full distribution of ypred , the NN’s mean predicted probability.
(b) Attributes diagram for regression, where the true mean of the data is 28.76. Reliability curves are shown for
four NNs; the MSESS for each NN is shown in the legend. The inset histogram at the top left shows the full distri-
bution of ytrue, and the inset histogram at the bottom right shows the full distribution of ypred ; for a perfect NN the
two histograms would match. All other elements of (b) are as in (a).

11 As mentioned in section 2c, for UQ approaches that do not
produce an ensemble, there is still a way to compute the standard
deviation of the predicted distribution.
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SSRAT 5
SD

RMSE
, (5)

where RMSE and SD are analogous to RMSEk and SDk , re-
spectively, but averaged over the whole dataset instead of one
bin. SSRAT varies from [0, ‘), and the ideal value is 1.
SSRAT. 1 indicates that the model is underconfident on average;
SSRAT, 1 indicates that the model is overconfident on average.

The spread–skill plot and both summary measures can be
used for both regression and classification. In the regression
case, spread, skill, and SSREL are all in physical units. In the
classification case, spread, skill, and SSREL are in units of class
probability, ranging from [0, 1]. SSRAT is always unitless.

c. The discard test

The discard test, inspired by Barnes and Barnes (2021) and
similar to the filter experiment in Fig. 8.18 of Dürr et al. (2020),
compares model error versus the fraction of highest-uncertainty
cases discarded. Sample results are shown in Fig. 9.

For a model with useful uncertainty estimates, the error
should decrease whenever discard fraction is increased. The
quality of the discard test can be summarized by two meas-
ures: MF and DI. The MF quantifies how often model error
decreases}regardless of how much it decreases}when the
discard fraction is increased:

MF 5
1

Nf 2 1
∑

Nf21

i51
I («i $ «i11): (6)

The term Nf is the number of discard fractions used; «i is the
model error with the ith discard fraction, which is greater than

the (i 2 1)th discard fraction; and I () is the indicator func-
tion, evaluating to 1 if the condition is true and 0 otherwise.
MF varies from [0, 1], and the ideal value is 1. Meanwhile, DI
quantifies the average decrease in model error when discard
fraction is increased:

DI 5
1

Nf 2 1
∑

Nf21

i51
(«i 2 «i11): (7)

DI varies in general from (2‘, ‘), and higher values are
better.

Neither summary measure tells the whole story. The MF is
1.0 (the ideal value) as long as error always decreases when
the discard fraction is increased, even if the error decreases
by a very small (insignificant) amount. Also, the DI involves
the mean, which is strongly influenced by outliers. For exam-
ple, in Fig. 9 the DI for MC dropout is strongly influenced by
the large drop in RMSE as discard fraction is increased from
0.8 to 0.9. This large drop leads to a positive DI for MC drop-
out, even though model error usually increases when discard
fraction is increased, the opposite of the desired effect. Thus,
the MF and DI should always be used in tandem.

The discard test and both summary measures can be used
for both regression and classification. In the regression case, «i
is a regression-based error metric like RMSE; in the classifica-
tion case, «i is a classification-based metric like cross entropy.

The discard test could be very useful in an operational envi-
ronment. For example, consider results in Fig. 9 and suppose
that there is an alternate prediction method to the NNs, which
is true for most NN applications to environmental science.
Also, suppose that the maximum acceptable error for this ap-
plication is 1.0. Figure 9 shows that for three of the four
NNs}all except the one using MC dropout}error , 1.0 for
all discard fractions $ 30%. Thus, for each of these three
NNs, an operational forecaster could find the spread value
matching a discard fraction of 30%}let this be s∗}and use
the NN predictions only when spread, s∗.

We note a crucial difference between evaluation methods.
The discard test is concerned only with ranking quality. If the
model correctly ranks uncertainty among all data samples,

FIG. 8. Spread–skill plot. The inset histogram shows how often
each spread value occurs. Points below, above, and on the 1-to-1 line
correspond to spread values where the model is underconfident,
overconfident, and perfectly calibrated, respectively.

FIG. 9. Sample results for discard test. In this case, the error metric
used is the RMSE of the NN’s mean prediction. The legend shows
the MF and DI for each NN.
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MF 5 1.0 (the ideal value), even if the model has a persistent
bias, that is, it always underestimates or overestimates uncer-
tainty. Meanwhile, the spread–skill plot is concerned only
with calibration quality or bias. If the spread and skill are
equal for all spread values, the plot follows the 1-to-1 line
(ideal), even if the model cannot accurately rank the uncer-
tainty of its own predictions.

d. The PIT histogram

The PIT is F(ytrue), where F is the CDF of the predicted dis-
tribution. In other words, the PIT is the quantile of the pre-
dicted distribution at which the observed value occurs. A few

examples are shown in Fig. 10b. Note that the PIT is meaning-
ful only for regression problems, not for classification. For
classification the only possible observations are 0 and 1, while
predictions (event probabilities) must range from [0, 1]. Thus,
ytrue always occurs at one extreme of the predicted distribu-
tion, so the only possible PIT values are 0 and 1. Intermediate
PIT values do not occur, which makes for a trivial PIT
histogram.

The PIT histogram plots the distribution of PIT over many
data samples, with one PIT value per sample (Fig. 10c). For a
perfectly calibrated model, all PIT values occur equally often,
so the histogram is uniform. If the histogram has a hump in

(c)

(b)(a)

FIG. 10. (a),(b) Schematics explaining the PIT. These use the PDP_SINH model from Fig. 6, evaluated at x 5 7.
(a) PDF of predicted distribution, along with PIT values corresponding to a few possible ytrue values. The actual ytrue
value has a PIT of 0.63. (b) As in (a), but showing CDF instead of PDF. (c) Example of PIT histogram. The dashed
line represents a perfect PIT histogram.
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the middle, there are too many examples with intermediate
PIT values (where ytrue occurs near the middle of the pre-
dicted distribution) and too few examples with extreme PIT
values (where ytrue occurs near the end of the predicted distri-
bution), so the extremes of the predicted distribution are on
average too extreme. In other words, the predicted distribu-
tion is on average too wide, so the model is overspread or
“underconfident.” If the histogram has humps at the ends (as
for MC dropout in Fig. 10c), the predicted distribution is
on average too narrow, so the model is underspread or
“overconfident.” The PIT histogram is a generalization of the
rank histogram (or “Talagrand diagram”), which is more fa-
miliar to atmospheric scientists (Hamill 2001) and can be in-
terpreted the same way.

We note that a uniform PIT histogram is a necessary but
not sufficient condition for calibrated uncertainty. For exam-
ple, see Fig. 2 of Hamill (2001), where a nearly uniform rank
histogram is produced by a combination of three miscali-
brated predicted distributions: one with a positively biased
mean prediction, one with a negatively biased mean predic-
tion, and one with zero bias in the mean prediction but exces-
sive spread. This example illustrates why using multiple
evaluation tools is important. Biases in the mean prediction
would average to zero and therefore not be captured by the
attributes diagram, but all three miscalibrated distributions
would generate excessive spread,12 which would be captured
by the spread–skill plot.

The quality of the PIT histogram can be summarized by
PITD (Nipen and Stull 2011):

PITD 5
1
K
∑
Nk

k51

Nk

N
2

1
K

( )2[ ]1/2
, (8)

where K is the number of bins; N is the total number of data
samples; and Nk is the number of data samples in the kth bin.
PITD varies from [0, 1], and the ideal value is 0.

e. The CRPS

The CRPS is commonly used in atmospheric science to
evaluate probabilistic forecasts, that is, to compare a pre-
dicted distribution to an observation (Matheson and Winkler
1976; Hersbach 2000; Gneiting et al. 2005). The CRPS is a
generalization of the mean absolute error (MAE) for proba-
bilistic forecasts:

CRPS(F, ytrue) 5
�‘

2‘
[F(ypred) 2 H (ypred 2 ytrue)]2dypred,

(9)

where ytrue is the single observed value; F is the CDF of the
predicted distribution; ypred, the variable of integration, is one
value in the predicted distribution; and H is the Heaviside

step function, evaluating to 1 if ypred $ ytrue and 0 otherwise.
Thus, Eq. (9) is the error between the predicted and observed
CDF, the second of which is a step function (see Fig. 11).

Because the CRPS measures differences between the CDFs
of ytrue and ypred, it can serve as a loss function for UQ in
NNs. For datasets with uncertainty due to any of the sources
discussed in section 2a, the conditional distribution ytrue|x is
no longer a point mass, so the corresponding CDF is no lon-
ger a step function. In this case the NN can be optimized to
capture the spread in ytrue, that is, to estimate the ML-aleatory
uncertainty. To use the CRPS as a loss function, Gneiting and
Raftery (2007) made the necessary modifications to Eq. (9),
using distribution theory and identities from Székely and
Rizzo (2005):

CRPS 5
1
N
∑
N

i51
|ytrue 2 yipred| 2

1
2

1
N2 ∑

N

i51
∑
N

j51
|yipred 2 yjpred|, (10)

where N is the ensemble size; ytrue is the single observed
value; and ykpred is the prediction for the kth ensemble mem-
ber. The first term is the MAE of the mean prediction, and
the second term is half the model spread, with “spread” de-
fined as the mean absolute pairwise difference between en-
semble members. This form of the CRPS can be used as a loss
function for EP, and there are many examples in the atmo-
spheric-science literature (Van Schaeybroeck and Vannitsem
2015; Scheuerer et al. 2020; Baran and Baran 2021; Dai and
Hemri 2021; Ghazvinian et al. 2021; Veldkamp et al. 2021;
Chapman et al. 2022; Schulz and Lerch 2022).

Figure 12 demonstrates the utility of the EP-CRPS ap-
proach. We use synthetic data with one predictor x and one
target y, with a combined exponential and point-mass dis-
tribution. In other words, for some samples y increases

FIG. 11. Schematic representation of the CRPS. The axes show
the CDF for ytrue, y

determ
pred (the single prediction from a deterministic

model), and y
prob
pred (predictions from a probabilistic model). The

CRPS for a given model is the area in the CDF plot between the
ytrue curve and the given model’s ypred curve. Adapted from Brey
(2021).

12 Drawing ypred values from the positively and negatively bi-
ased distributions would generate excessive spread, because their
biases would ensure that most ypred values are far above and below
ytrue, respectively.
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exponentially with x, and for some samples y 5 0 regardless.
Thus, for all x values except the smallest (;21.8), the mar-
ginal distribution (y given x) is bimodal, as shown in Fig. 12a.
A model trained with the MAE loss function “splits the dif-
ference” between the two modes, always predicting poorly at
higher x. Conversely, a model trained with the CRPS loss
function produces ensemble members that capture both
modes. Thus, the CRPS-trained model achieves a much better
CRPS (37) than the MAE-trained model (547). However, the
central prediction of the CRPS-trained model (heavy purple
line in Fig. 12a) performs poorly, like the MAE-trained model.
This serves as a reminder that the value of a probabilistic
model is not only in the central prediction}one should con-
sider the full predicted distribution. In addition to using the
EP-CRPS approach to demonstrate the evaluation methods,
we use it to solve a real-world regression problem (section 5).

The CRPS can also be modified to serve as a loss function for
the PDP approach to UQ. Analytical forms of the CRPS have
been derived for many canonical distributions. These include
the normal distribution (Van Schaeybroeck and Vannitsem
2015; Rasp and Lerch 2018); lognormal, truncated lognormal,
and truncated generalized extreme value (TGEV) distribu-
tions (Baran and Baran 2021); zero-truncated normal distri-
bution (Chapman et al. 2022); censored, shifted gamma
distribution (CSGD; Ghazvinian et al. 2021); and truncated
logistic and piecewise uniform distributions (Schulz and Lerch
2022).

f. IGN

IGN measures how much a probabilistic forecast is concen-
trated in the correct areas (Good 1952; Roulston and Smith
2002; Nipen and Stull 2011). It is defined as

IGN 52
1
N
∑
N

i51
log2[ f (ytruei )], (11)

where f is the PDF of the predicted distribution and ytruei is
the observed value for the ith data sample. Thus, f (ytruei ) is the
predicted PDF evaluated at ytruei . IGN varies from [0, ‘), and
the ideal value is 0. IGN rewards correct high-confidence pre-
dictions, that is, narrow predicted distributions that contain
the observed value.

g. Score comparisons

Table 2 shows all eight scores discussed in section 4 for the
four NNs}each with a different UQ method}applied to the
synthetic dataset. All four NNs produce skillful mean predic-
tions, indicated by an MSESS .. 0. Also, mean predictions
from the four NNs have nearly equal quality, indicated by the
narrow range for MSESS (from 0.843 to 0.849). However, in
terms of uncertainty, MC_DROPS clearly performs worse than
the other UQ methods, achieving the worst value for all scores
other than MSESS. As expected, because this model was
trained with a deterministic loss function, it does not capture
ML-aleatory uncertainty. The other three UQ methods}PDP
with the normal distribution (PDP_NORM), PDP with the
SHASH distribution (PDP_SHASH), and EP with the CRPS
loss function (EP_CRPS)}achieve similar performance. PDP_
NORM is the best-ranking method on two scores; PDP_
SHASH ranks best on two scores; EP_CRPS ranks best on
three scores; and the three methods share the best ranking on
one score (MF).

5. Demonstration of UQ and evaluation methods for
a regression task

a. Predicting dewpoint profiles for severe
weather nowcasting

Vertical profiles of dewpoint are useful in predicting deep
convection (i.e., thunderstorms), which can produce severe
weather. Thunderstorms pose a lightning threat and may

FIG. 12. Using two NNs to solve a simple problem (the relationship between target y and predictor x is described in
the main text). One NN is deterministic and trained with the MAE loss; the other is probabilistic (EP) and trained
with the CRPS loss. (a) Scatterplot of predictions and observations. For the CRPS-trained model, both individual en-
semble members and the mean are shown. Note that many ensemble members are hidden below the observations at
y 5 0. (b)] Marginal CDFs (y given x 5 1.5) for ytrue, y

MAE
pred (the single prediction of the MAE-trained model), and

yCRPS
pred (the predictions of the CRPS-trained model). As explained in the caption of Fig. 11, the CRPS for each model
equals an area between two curves in this plot.
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produce heavy rain, high winds, large hail, and tornadoes; all
these phenomena threaten both lives and property. Currently,
human forecasters rely on observations from radiosonde
launches, which are spatially and temporally sparse, and simu-
lations from numerical weather prediction (NWP) models.
Stock (2021) used ML techniques to improve dewpoint verti-
cal profiles, combining information from NWP models and
satellite data, which are spatially and temporally denser than
radiosonde data. Here we extend that work by adding UQ.

Specifically, we use a one-dimensional U-net architecture,
adapted from Stock (2021), to predict dewpoint at 256 vertical
levels. The predictors are a first-guess dewpoint profile from
the Rapid Refresh NWP model (RAP; Benjamin et al. 2016),
a temperature profile from the RAP, and satellite data from
the Geostationary Operational Environmental Satellite-16
(GOES-16) Advanced Baseline Imager (Schmit et al. 2017).
The targets (ground truth) are dewpoint profiles from radio-
sonde observations (raob) over the central United States be-
tween 1 January 2017 and 31 August 2020. We use 75% of the
data for training, 10% for validation, and 15% for testing.
The model and experimental setup are described fully in
Stock (2021); the model structure and the UQ methods we
applied are shown in Fig. 13.

We train U-net models with four UQ methods (purple box
in Fig. 13). The first two use PDP to predict normal (PDP_
NORM) and SHASH (PDP_SHASH) distributions; the third
uses EP with the CRPS loss function and 60 ensemble mem-
bers (EP_CRPS); the last uses MC dropout with the MSE loss
function (MC_DROPS), 60 ensemble members, and a drop-
out rate of 0.1 for all D blocks and U blocks. In earlier work
(not shown) we experimented with varying the dropout rate
from 0.01 to 0.5, as well as including versus not including
dropout in the D blocks. These variations had minimal impact
on the results shown.

b. UQ results and discussion

1) CASE STUDIES

Figure 14 shows three case studies for the PDP_NORM
model, including both mean predictions and uncertainty esti-
mates. As shown in Figs. 14a–c, the PDP_NORM model
reasonably captures the ytrue spread. Specifically, the 95%
confidence interval contains the observed value ytrue about
95% of the time. Also, the model’s uncertainty usually in-
creases with error in the mean prediction, suggesting that un-
certainty and error are highly correlated (thus, we expect
results of the discard test to be favorable). Beyond individual
case studies, we have plotted a composite (Fig. 14d) by aver-
aging over all the testing samples. Here we note that 1) the
mean ytrue and ypred profiles are almost exactly the same, indi-
cating that there is almost zero bias in the PDP_NORM mod-
el’s mean predictions; 2) model uncertainty is lowest near the
surface and highest in the mid–upper troposphere, around
300–500 hPa.

2) UQ-EVALUATION GRAPHICS

Evaluation graphics for all four UQ methods are shown in
Fig. 15. Starting with the mean predictions, the attributes dia-
gram (Fig. 15a) shows that each U-net model}regardless of
which UQ method it uses}has well calibrated mean predic-
tions, with the curve nearly following the 1-to-1 line. All mod-
els have an RMSE of ;58C, and MSESS of 0.98, for the mean
predictions. The largest conditional bias is a slight negative
bias (;228C) for the lowest dewpoint predictions by PDP_
SHASH. This bias likely occurs because the lowest dewpoints
are underrepresented in the training data (i.e., rare events), as
shown in the inset histogram. The remainder of this subsec-
tion focuses on evaluating uncertainty estimates, instead of
the mean predictions.

FIG. 13. U-net architecture for predicting dewpoint profiles. The initial RAP profile includes two variables}temperature and
dewpoint}and is input to the beginning of the U-net (i.e., the first D-block layer). GOES data are included at the bottleneck
layer, where they are concatenated with features extracted from RAP profiles by the D block. The output is the best-guess dewpoint profile,
combining RAP and GOES data. Uncertainty is estimated at each layer in this profile. Adapted from Stock (2021), which did not include
uncertainty estimates.
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The spread–skill plot (Fig. 15b) shows that for the vast majority
of data points (those with ypred spread below;88C), the PDP and
EP approaches produce well calibrated uncertainty estimates,
with the curve nearly following the 1-to-1 line. For the few data
points with ypred spread . 88C, the PDP and EP approaches
are underconfident; EP is the most underconfident. However,
because EP samples directly from the ypred distribution}rather
than creating the ypred distribution from just a few estimated
parameters}EP can produce more complicated distributions.
For example, EP can capture rare events where the ytrue dis-
tribution is likely to resemble an extreme-value distribution
instead of the typical canonical distributions assumed by PDP.

Although the flexibility of the EP approach is an advantage,
it can complicate UQ evaluation, because for highly nonnormal
distributions the standard deviation is a misleading measure of
spread. Instead of using the standard deviation to quantify ypred

spread, it might be more appropriate to use the full histogram
or PDF of the ensemble members. Allen et al. (2022) intro-
duced the weighted PIT histogram, which is useful for rare
events because it allows for regime-specific UQ evaluation (i.e.,
assessing forecast calibration as a function of the observed
value). However, it is unclear how best to incorporate a histo-
gram or PDF into an evaluation method like the spread–skill
plot, so we leave this suggestion for future work.

Meanwhile, the MC-dropout approach is very overconfident
and rarely produces ypred spread above ;38C (Fig. 15b). This
result is not surprising, since MC dropout with a deterministic
loss function (here, the MSE) cannot capture ML-aleatory un-
certainty. This highlights the need to use a probabilistic loss
function with MC dropout.

The discard test (Fig. 15c) shows that, for all four UQ
methods, error (RMSE of the mean prediction) decreases

FIG. 14. Case studies for PDP_NORM model for predicting dewpoint profiles. In each panel, the observed profile
ytrue is shown in black, while the mean prediction and uncertainty estimate (properties of the ypred distribution)
are shown in blue and gray, respectively. (a)–(c) Individual case studies. Here, the uncertainty estimate shown is the
95% confidence interval. (d) Composite over all testing samples. Here, the uncertainty estimate shown is the mean of
the predicted standard deviations.
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whenever discard fraction is increased}that is, whenever
high-uncertainty cases are removed. In other words, all four
models have an MF of 1.0. However, error decreases more
sharply with discard fraction for the PDP and EP ap-
proaches (leading to DI $ 0.33) than for MC dropout (lead-
ing to DI 5 0.09). These results highlight the importance of
using both the MF and DI to summarize results of the dis-
card test.

Finally, the PIT histogram (Fig. 15d) shows that the PDP
and EP approaches produce well calibrated uncertainty esti-
mates, with a nearly flat histogram and low PITD score. The
PDP models have a slight hump in the middle of the histo-
gram, indicating slight underconfidence (consistent with the
spread–skill plot in Fig. 15b), while the EP model has a slight
hump at the left edge of the histogram, indicating a slight
overprediction bias (which cannot be seen in any of the other
graphics in Fig. 15). Meanwhile, the MC-dropout model has
large humps at both edges of the histogram, indicating that it
is very overconfident (consistent with the spread–skill plot).

3) UQ-EVALUATION SCORES

Table 3 shows all eight scores discussed in section 4, plus
the RMSE, for all four UQ methods on the dewpoint task.

Qualitatively, results for this real-world task are nearly identi-
cal to results on the synthetic dataset (Table 2). Specifically,
1) mean predictions from the four models have nearly equal
skill, with similar RMSE and MSESS values; 2) MC dropout
produces the worst UQ estimates, as expected with a deter-
ministic loss function; and 3) uncertainty estimates from the
PDP and EP approaches have nearly equal skill, although the
EP_CRPS model achieves the best score (6 times) more often
than the PDP_SHASHmodel (5 times).

FIG. 15. Evaluation graphics for dewpoint prediction, showing U-nets trained with four different UQ methods: two
PDP approaches (PDP_NORM and PDP_SHASH), an EP approach (EP_CRPS), and an MC-dropout approach
(MC_DROPS). (a) Attributes diagram. The legend shows (RMSE, MSESS) for each model. (b) Spread–skill plot, in-
cluding the SSRAT and SSREL for each model. (c) Discard test, including the MF and DI for each model. (d) PIT
histogram, including the PITD for each model.

TABLE 3. Evaluation scores for the dewpoint task, with the best
value for each score highlighted in bold.

Score PDP_NORM PDP_SHASH EP_CRPS MC_DROPS

RMSE 4.97 5.16 4.89 4.92
MSESS 0.98 0.98 0.98 0.98
SSRAT 0.91 0.98 0.88 0.17
SSREL 0.31 0.22 0.33 4.09
MF 1.00 1.00 1.00 1.00
DI 0.35 0.36 0.33 0.09
PITD 0.014 0.011 0.008 0.142
CRPS 2.52 2.62 2.38 3.07
IGN 4.36 4.40 4.15 8.81
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6. Demonstration of UQ and evaluation methods for a
classification task

In this section we introduce the classification task (predict-
ing convection), apply MC dropout and quantile regression to
obtain uncertainty estimates, then evaluate the uncertainty
estimates and show case studies.

a. Predicting convection from satellite imagery

We adapt the work of Lagerquist et al. (2021, herein L21)
to include uncertainty. The task is to predict the occurrence
of thunderstorms (henceforth, “convection”) at 1-h lead time
at each pixel in a grid. As predictors, we use gridded bright-
ness temperatures from the Himawari-8 satellite at seven
wavelengths and three lag times (0, 20, and 40 min before the
forecast issue time t0), as shown in Fig. 16. The target is a
binary convection mask at t0 1 1 h, created by applying
an algorithm called “storm-labeling in 3 dimensions” (SL3D;
Starzec et al. 2017) to radar data. Both the predictor and
target variables are on a latitude–longitude grid with 0.01258
(;1.25 km) spacing. We train and evaluate the NNs only at
pixels within 100 km of the nearest radar (gray circles in
Figs. 16j,k), where radar coverage is sufficient to detect con-
vection. See L21 for complete details.

Our NN architecture is a U-net specially designed to pre-
dict gridded variables}here, the presence of convection at
t0 1 1 h. Details on our particular architecture are in L21. The
U-net in L21 is deterministic; in this paper we use either
MC dropout or QR to make the U-net probabilistic. For MC
dropout, we use the architecture in Fig. 17a. For QR, we re-
place the single output layer in Fig. 17a with N 1 1 output
layers, where N is the number of quantile levels estimated
(Fig. 17b). We use Eq. (2) to prevent quantile crossing, as rep-
resented schematically in the rightmost column of Fig. 17b.13

Hyperparameters not shown in Fig. 17 include batch normali-
zation (we perform batch normalization after each ReLU ac-
tivation) and the training procedure (we train for 1000 epochs
with the Adam optimizer, an initial learning rate of 0.001,
early stopping if validation loss has not improved over 30 epochs,
and a 40% reduction in learning rate if validation loss has not
improved over 10 epochs). These decisions are justified in
Table S1 of L21.

Because convection is a rare event (occurring at only 0.75%
of pixels), we need to use an aggressive loss function (one that
rewards true positives more than true negatives). Traditional
loss functions, like the traditional quantile loss [Eq. (1)], which
reward true positives and true negatives equally, would result
in a model that almost never predicts convection. Thus, we
use a hybrid between the fractions skill score and tradi-
tional quantile loss, which we call the “aggressive quantile
loss.” See the appendix for details.

b. UQ results and discussion

For MC dropout we tune three hyperparameters, specifi-
cally dropout rates for the last three layers (Table 4). For QR
we tune two hyperparameters: the set of quantile levels and
the weight w in Eq. (A2), which affects the importance of de-
terministic versus probabilistic predictions in the loss function
(Table 4). Details are in section 1 of the online supplemental
material. We run the MC-dropout models 100 times in infer-
ence mode, yielding an ensemble size of 100. We use the vali-
dation data to select hyperparameters and the independent
testing data to show results for the selected models.

MONTE CARLO DROPOUT

As discussed in the online supplemental material, as drop-
out rates increase, the uncertainty estimates improve but the
mean predictions deteriorate. Hence, there is a trade-off be-
tween the quality of probabilistic and deterministic predic-
tions. We believe that this trade-off exists for two reasons.
First, MC dropout leads to overconfident models,14 so the eas-
iest way for an MC-dropout model to improve uncertainty es-
timates is to produce higher spread. However, second, since
MC dropout is a post hoc method not optimized to produce
good uncertainty estimates, higher spread typically means
lower skill (worse mean predictions). In our judgement (based
on subjectively combining evaluation scores shown in the on-
line supplemental material), the best model has a dropout
rate of 0.250 for the last layer, 0.125 for the second-to-last
layer, and 0.375 for the third-to-last layer.

Figure 18a shows the spread–skill plot for this model. The
model is overconfident (underspread) for all bins; this prob-
lem is typical for MC dropout, including atmospheric-science
applications (Scher and Messori 2021; Clare et al. 2021;
Garg et al. 2022). Also, the model rarely produces spread
values . 0.04, as shown in the histogram in Fig. 18a. The
skewed histogram is explained by the inset in Fig. 18a: model
spread increases with convection frequency (the mean target
value), and since convection is a rare event, we should there-
fore expect high model spread to be a rare event. Figure 18b
shows the discard test for the best model. Model error de-
creases almost every time the discard fraction is increased
(18 of 19 times), yielding an MF of 94.74%. Thus, the ranking
quality of the model’s uncertainty estimates is high. As shown
in the inset of Fig. 18b, event frequency decreases from 0.8%
for all data samples to 0.2% for those not including the 10%
with highest uncertainty. In other words, most convection is
associated with very high uncertainty, consistent with the inset
of Fig. 18a.

Figure 19 shows a case study created by applying the best
model to one time step in the testing data, during Tropical De-
pression Luis. Figure 19 summarizes the predicted distribution
with five numbers: the mean, standard deviation, and three
percentiles of convection probability. We do not show percen-
tiles below the 50th, because estimates corresponding to these13 For a regression problem, Eq. (2) alone is sufficient. For a

classification problem like this one, quantile-based estimates ŷi
must range from [0, 1], allowing them to be interpreted as proba-
bilities. This is why, as shown in Fig. 17b, we apply the sigmoid
activation function to the output of Eq. (2).

14 By examining the spread–skill plots for all 125 models, we
confirmed that they are all overconfident.
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FIG. 16. Input data for predicting convection at 2200 UTC 2 Jun 2017. Shown are three of the seven predictors:
band 8 (6.25 mm), band 11 (8.6 mm), and band 16 (13.3 mm). (a)–(c) Predictors at a lag time of 40 min; (d)–(f) predictors
at a lag time of 20 min; (g)–(i) predictors at a lag time of 0 min. All predictors use the color bar next to (i). (j) Composite
(column maximum) radar reflectivity. (k) Convection mask, the target variable. The black dots are pixels with true
convection. Gray circles in (j) and (k) show the 100-km range ring around each radar.
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percentiles are usually very small; most of the variation in the
predicted distribution is between the 50th and 97.5th percen-
tiles. The case shown in Fig. 19 features two large areas of con-
vection: strong (“S”) and weak (“W”). We make the following
observations. First, in terms of the mean and any percentile,
the model produces higher probabilities for strong convection
than for weak convection (Figs. 19a,c–e), which is a desired
property. Second, the model is more uncertain for strong con-
vection than for weak convection (Fig. 19b). This is not a de-
sired property, because weak convection (borderline cases) is
more difficult to identify and should have higher uncertainty.

Third, the probability maps contain checkerboard artifacts
(Figs. 19a–c); these are caused by using dropout in the last
layer, which sets some probabilities to zero. Fourth, the over-
confidence (underspread) problem with MC dropout is obvi-
ous in area W, where there is almost no difference between
the 50th and 97.5th percentile estimates (Figs. 19c–e).

c. QR

As discussed in the online supplemental material, results of
the hyperparameter experiment are noisy. In our judgement
(based on subjectively combining evaluation scores shown in

FIG. 17. U-net architecture for predicting convection from satellite imagery, using either (a) MC dropout or (b) quantile regression to
estimate uncertainty. In each set of feature maps, the numbers are dimensions: Nrows 3 Ncolumns 3 Nchannels. The 21 input channels are the
raw predictor variables, i.e., gridded brightness temperatures at 7 wavelengths and 3 lag times. In (a), the last three convolutional layers
are marked with dashed lines (either orange or black), indicating that these layers may include MC dropout. In (b), to be brief, we assume
that there are only three quantile levels to estimate. When there are more quantile levels (which is the case for every U-net involved in
this study), the pattern on the right side of (b) repeats. Specifically, estimates for quantile level qi are created by applying 13 1 convolution
with ReLU to the feature maps marked “205 3 205 3 2,” adding the result to presigmoid estimates for quantile level qi21, then applying
the sigmoid activation function. The sigmoid activation function constrains the final estimates to the range [0, 1], so that they may be inter-
preted as probabilities of convection.
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the online supplemental material) the best model has 17 quan-
tile levels and a weight of 6 [w 5 6 in Eq. (A2)]. To compute
the model spread, defined as the standard deviation of the pre-
dicted distribution, we use Eq. (15) of Wan et al. (2014).

The spread–skill plot for the best model shows that it is al-
most perfectly calibrated when the ypred distribution has
spread # 0.06 and underconfident (overspread) when ypred
spread . 0.06 (Fig. 18c). However, spread rarely exceeds 0.06
(only for 22.7% of examples, as shown by the histogram), so
the model is generally well calibrated. The spread–skill plots
reveal two advantages of the QR model (Fig. 18c) over the
MC-dropout model (Fig. 18a). First, the QR model is better-
calibrated overall, which manifests in a substantially lower
SSREL (0.027 vs 0.037); the difference is significant at the
95% confidence level.15 Second, the QR model’s spread histo-
gram is less skewed, that is, the QR model produces high
spread values (.0.04) more often. However, the QR model
is not much better-calibrated at these high spread values.
As mentioned above, the overconfidence problem for MC
dropout (which occurs for all 125 models we trained) is well
documented in the literature. However, to our knowledge,
the underconfidence problem for QR (which occurs for all
90 models we trained) has not been noted previously. Hence,
this may be a problem with QR in general or specific to our
application.

Figure 18d shows the discard test for the best QR model.
The error decreases every time the discard fraction is in-
creased, yielding an MF of 100%, compared to 94.74% for the
MC-dropout model. Also, error decreases more sharply with
discard fraction for the QR model than for the MC-dropout
model (Fig. 18b), leading to a higher DI score (0.0033 vs
0.0030).

Figure 20 shows a case study for the best QR model, at the
same time step as the MC-dropout case study (Fig. 19). We
make the following observations. First, like the MC-dropout
model, the QR model produces higher probabilities for stron-
ger convection16 (Figs. 20a,c,d). Second, according to the stan-
dard deviation (Fig. 20b), the QR model is more uncertain for
the strong convection than the weak convection}a disadvan-
tage shared by the MC-dropout model. The third observation
counteracts the second: the standard deviation is not the full
story on uncertainty, and sometimes it is necessary to look at
the full predicted distribution. The MC-dropout model has
almost no difference between the 50th and 97.5th percentile
estimates in area W (Figs. 19c–e), consistent with the low
standard deviations (Fig. 19b). However, the QR model has
large differences between the 50th and 97.5th percentile esti-
mates in area W (Figs. 20c–e), despite the standard deviations
here being smaller than elsewhere in the domain (Fig. 20b).
Fourth, the overall underconfidence of the QR model}shown
in Fig. 18c}is manifested in the case study, where the 97.5th
percentile estimate is essentially 100% everywhere in the do-
main (Fig. 20e). For an additional case study during the winter,
see section 2 of the online supplemental material.

This section details many advantages of the QR model over
the MC-dropout model. However, note that the MC-dropout
model has a substantially lower CRPS (0.020 vs 0.034). This
highlights that single-number summaries are not the full story
and should be accompanied by a detailed investigation, in-
cluding standard evaluation graphics and case studies.

7. Discussion and conclusions

Uncertainty quantification (UQ) is a key tool for understand-
ing ML models. For applications that involve critical decision-
making, UQ is invaluable for assessing the trustworthiness of
the model. Recent years have seen a surge in research on UQ
methods for ML, especially neural networks (NN). However,
as more UQ methods are developed and applied in domains
such as environmental science, it is essential for domain scientists
to understand the UQ approaches and how to evaluate them}

that is, how to determine whether the uncertainty estimates are
good. If uncertainty estimates are poor, they can easily increase
trust in an ML model without increasing the model’s actual
trustworthiness.

To this end, we have summarized six popular UQ approaches,
four UQ-evaluation graphics, and eight UQ-evaluation scores
(single-number summaries)}with the goal of making all these
tools accessible to the environmental-science community. We
have included sample Python code implementing most of the UQ
approaches, and all of the UQ-evaluation methods, for NNs. Last,
we have applied several UQ approaches and UQ-evaluation
methods to two real-world applications in atmospheric science:
predicting dewpoint profiles (a regression task) and nowcasting
the locations of convection (a classification task).

TABLE 4. Experimental hyperparameters for the classification
task (nowcasting convection). Both hyperparameter experiments
use the grid-search algorithm (section 11.4.3 of Goodfellow et al.
2016). Thus, we train 125 NNs with MC dropout (5 dropout
rates for third-to-last layer 3 5 rates for second-to-last layer 3

5 rates for last layer) and 90 NNs with QR (9 sets of quantile
levels 3 10 weights. Exact quantile levels used (rather than just
the number of quantiles) are shown in Table S1 in the online
supplemental material.

Hyperparameter Values attempted

MC-dropout experiment
Dropout rate for third-to-last layer 0.000, 0.125, 0.250,

0.375, 0.500
Dropout rate for second-to-last layer See above
Dropout rate for last layer See above

QR experiment
Number of quantile levels 17, 18, 19, 22, 26,

30, 38, 53, 101
Loss-function weight [Eq. (A2)] 1, 2, 3, 4, 5, 6, 7,

8, 9, 10

15 Determined by a one-sided paired bootstrap test with 1000
iterations.

16 However, at the 97.5th percentile of the predicted distribu-
tion, the convection probability is ;100% at all pixels (Fig. 20e),
regardless of whether the pixel contains strong or weak or no
convection.
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To summarize our findings on UQ-evaluation methods:

• The attributes diagram provides an excellent way to evalu-
ate the central predictions, revealing where the predictions
are performing poorly and indicating biases.

• The spread–skill plot comprehensively describes how the
model error compares to the model uncertainty prediction,
indicating 1) if the uncertainty estimates are well calibrated
or conditionally biased (i.e., under- or overconfident);
2) how often the model performs well (or poorly).

• Both the spread–skill plot and PIT histogram display uncer-
tainty calibration. The spread–skill plot can identify under/
overconfidence as a function of model spread, while the
PIT histogram cannot. The PIT histogram can identify
under/overprediction (whether ytrue falls too often near the

top/bottom of the ypred distribution, respectively), while the
spread–skill plot cannot.

• The discard test shows whether error is correlated with the
uncertainty, quickly identifying if model performance im-
proves by removing the cases with the highest uncertainty.
In an operational setting, information conveyed by the dis-
card test can be very useful. For example, if users have a
threshold for maximum acceptable error (which is not
available in real time), they can set a corresponding thresh-
old on model spread (which is available in real time).

• The evaluation scores provide a quick way to compare re-
sults between models; however, the graphics allow for
deeper insight. We suggest using them together, because
they provide complementary information. For example, in
our real-world convection application, the often-used CRPS

FIG. 18. (a) Spread–skill plot and (b) discard test, measured on testing data, when using MC dropout to predict convection. (c) Spread–
skill plot and (d) discard test, measured on testing data, when using quantile regression to predict convection. The histogram in the
spread–skill plot shows the percentage of testing examples in each bin of spread values; the bins have a spacing of 0.01.
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suggested that MC dropout was a better UQ method than
quantile regression, but all graphics suggested the opposite.

• We caution that evaluation methods using a single number
to quantify model spread}like the standard deviation,
which is always used in the spread–skill plot and typically
used for the discard test}may be misleading for highly
nonnormal distributions. UQ-evaluation methods could
possibly be altered to include more holistic information,
such as the full histogram or PDF, but we leave these sug-
gestions for future work.

Case studies are useful not only to understand a model’s behav-
ior in a way that cannot be conveyed by averaging over a large
dataset, but also to examine the shape of the ypred distribution.

Applying the UQ approaches to real-world atmospheric-
science problems yielded the following findings.

• The PDP, NPDP, and EP approaches perform well on
average but are underconfident for high-error cases.

• PDP and EP perform very similarly for the regression task,
producing well calibrated uncertainty estimates.

• The PDP approach with a normal distribution is the easiest
to implement, and it provided similar enough estimates
(even with asymmetric spread in ytrue) to other approaches
to justify its use.

• For applications with complicated ytrue spread (e.g., highly
nonnormal distributions or predicting rare/extreme events),
EP is a better approach a priori, because it is more flexible
and can theoretically match any type of distribution.

• QR, although typically used for regression tasks, can be useful
for classification tasks. Compared to MC dropout on the
convection application, QR produces a better spread–skill
plot, a better discard test, and more useful uncertainty esti-
mates in the case studies shown. However, for all 90 models,
each with different hyperparameters, we noted that QR is
underconfident. To our knowledge this underconfidence
problem is not documented in the literature, so it could be
a general problem with QR or one specific to our convec-
tion application.

• MC dropout is consistently the worst-performing approach,
providing overconfident uncertainty estimates. This is a
well-known problem in the literature; it arises because,
when trained with a deterministic loss function (the stan-
dard approach), MC dropout only captures ML-epistemic
uncertainty. However, due to its ease of implementation,
we believe that MC dropout should still be used as a base-
line against which to compare more sophisticated UQ
methods. If trained with a probabilistic loss function, MC
dropout can theoretically capture ML-aleatory uncertainty
as well.

Uncertainty estimation is a prevalent topic across a broad
range of communities; however, unfortunately the definitions
of aleatory and epistemic uncertainty are inconsistent between
disciplines, so as we incorporate UQ into environmental-science
applications, we need to be exact in our use of these terms.
This work focuses on capturing ML-aleatory uncertainty,
which is directly calculable from the data. However, total

FIG. 19. Case study for the MC-dropout model, during Tropical Depression Luis. All data (predictions, radar reflectivity, and convection
mask) are valid at 0830 UTC 23 Aug 2018. The predictions were made with 1-h lead time (initialized at 0730 UTC). (a) Mean convection
probability; (b) standard deviation of convective probability; (c) median convection probability; (d) 75th percentile convection probability;
(e) 97.5th percentile convection probability; (f) composite (column-maximum) radar reflectivity; and (g) true convection mask, with black
dots showing convective pixels. “S” indicates an area of strong convection west of the center of Luis, while “W” indicates an area of weak
convection east of the center.

H AYNE S E T A L . 25APRIL 2023

Unauthenticated | Downloaded 08/16/23 05:56 PM UTC



uncertainty also includes the ML-epistemic component, and
the best way to calculate this is still a topic of active research.
For example, how does one choose testing data with enough
out-of-regime samples to robustly estimate ML-epistemic uncer-
tainty? In future work we will implement BNNs, which can cap-
ture both types of uncertainty when combined with another UQ
approach. With the recent surge in UQ approaches and evalua-
tion techniques, the challenge is shifting from UQ implementa-
tion and evaluation to ensuring their proper use, including how
to effectively interpret and communicate the information that
they provide.
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APPENDIX

Aggressive Quantile Loss for Predicting Convection

The fractions skill score (FSS; Roberts and Lean 2008)
rewards true positives more than true negatives, making it

well suited for rare-event prediction. The U-net for QR
(Fig. 17b) has N 1 1 outputs, where N is the number of
quantile levels estimated. The last output is the deterministic
prediction, and its loss function is the pixelwise FSS (i.e., FSS
without a neighborhood filter). The ith output (i # N) is the
estimate for quantile level qi, and its loss function is a hybrid
between the traditional quantile loss [Eq. (1)] and the pixel-
wise FSS:

L 5

(1 2 qi)
(ytrue 2 y

qi
pred)2

y2true 1 yqipred
2
, ytrue # y

qi
pred;

qi
(ytrue 2 yqipred)2
y2true 1 y

qi
pred

2
, ytrue . y

qi
pred:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A1)

The term ytrue is the true value from the convection mask, and
yqipred 2 [0, 1] is the estimate for quantile level qi. You might
ask: why use the FSS without a neighborhood filter? After all,
a key benefit of the FSS is that it uses a neighborhood filter to
solve the double-penalty problem, where a model is punished
too harshly for a small (e.g., 1 pixel) offset between the pre-
dicted and observed event. The answer is that 1) convection is
a rare event, occurring at only 0.75% of pixels on average;
2) to obtain a U-net that predicts substantial probabilities for a
rare event, it is necessary to use a loss function that rewards
true positives more than true negatives; 3) the FSS, even with-
out a neighborhood filter, has this desired property; 4) including
a filter in the loss function requires the inclusion of a filter
in the UQ evaluation metrics, which is more complication
than we wanted. We call the loss function in Eq. (A1) the
“aggressive quantile loss.”

FIG. 20. As in Fig. 19, but for the QR model.
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To compute the total loss for the ith output (i # N), we
average Eq. (A1) over all pixels and valid times, yielding
L i . To compute the total loss for the U-net, we use the
equation

L model 5 wL deterministic 1
1
N
∑
N

i51
L i , (A2)

where L deterministic is the loss for the deterministic predic-
tion (pixelwise FSS) and wge1 is a user-selected weight.
When there are many quantile levels (i.e., N is large), this
weight is needed to emphasize the deterministic predictions,
ensuring that both deterministic and probabilistic predic-
tions are skillful.
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